Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Trypanosoma cruzi heme responsive gene (TcHRG) plays a central role in orchestrating heme uptake in epimastigotes

Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating heme responsive gene (TcHRG) expression when a free heme source is added to an axenic culture. Herein, we explored the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. We demonstrate that the endogenous TcHRG (protein and mRNA) responded similarly to bound (hemoglobin) and free (hemin) heme. Endogenous TcHRG was found in the flagellar pocket boundaries and partially overlapping with the mitochondrion. On the other hand, endocytic null parasites were able to develop and exhibited a similar heme content compared to wild type when fed with hemoglobin, indicating that endocytosis is not the main entrance pathway for hemoglobin-derived heme in this parasite. Moreover, the overexpression of TcHRG led to an increase in heme content when hemoglobin was used as the heme source. Taken together, these results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes control heme homeostasis by modulating TcHRG expression independently of the available source of heme.

Evelyn Tevere, Cecilia Beatriz Di Capua, Nathan Michael Chasen, Ronald Drew Etheridge, Julia Alejandra Cricco. FEBS J. 2023 Dec 13. doi: 10.1111/febs.17030.

Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen

Fig 6 Ch_R13E2-SpR systemically infects A. aegypti larvae.
Fig 6 Ch_R13E2-SpR systemically infects A. aegypti larvae.

The host-specific microbiotas of animals can both reduce and increase disease risks from pathogens. In contrast, how environmental microbial communities affect pathogens is largely unexplored. Aquatic habitats are of interest because water enables environmental microbes to readily interact with animal pathogens. Here, we focused on mosquitoes, which are important disease vectors as terrestrial adults but are strictly aquatic as larvae. We identified a pathogen of mosquito larvae from the field as a strain of Chromobacterium haemolyticum. Comparative genomic analyses and functional assays indicate this strain and other Chromobacterium are mosquitocidal but are also opportunistic pathogens of other animals. We also identify a critical role for diversity of the environmental microbiota in disease risk. Our study characterizes both the virulence mechanisms of a pathogen and the role of the environmental microbiota in disease risk to an aquatic animal of significant importance to human health.

Zhiwei Kang, Vincent G Martinson, Yin Wang, Kerri L Coon, Luca Valzania, Michael R Strand. mBio. 2023 Dec 6:e0272623. doi: 10.1128/mbio.02726-23.

Blood meals from ‘dead-end’ vertebrate hosts enhance transmission potential of malaria-infected mosquitoes

graphical abstract

Ingestion of an additional blood meal(s) by a hematophagic insect can accelerate development of several vector-borne parasites and pathogens. Most studies, however, offer blood from the same vertebrate host species as the original challenge (for e.g., human for primary and additional blood meals). Here, we show a second blood meal from bovine and canine hosts can also enhance sporozoite migration in Anopheles stephensi mosquitoes infected with the human- and rodent-restricted Plasmodium falciparum and P. berghei, respectively. The extrinsic incubation period (time to sporozoite appearance in salivary glands) showed more consistent reductions with blood from human and bovine donors than canine blood, although the latter’s effect may be confounded by the toxicity, albeit non-specific, associated with the anticoagulant used to collect whole blood from donors. The complex patterns of enhancement highlight the limitations of a laboratory system but are nonetheless reminiscent of parasite host-specificity and mosquito adaptations, and the genetic predisposition of An. stephensi for bovine blood. We suggest that in natural settings, a blood meal from any vertebrate host could accentuate the risk of human infections by P. falciparum: targeting vectors that also feed on animals, via endectocides for instance, may reduce the number of malaria-infected mosquitoes and thus directly lower residual transmission. Since endectocides also benefit animal health, our results underscore the utility of the One Health framework, which postulates that human health and well-being is interconnected with that of animals. We posit this framework will be further validated if our observations also apply to other vector-borne diseases which together are responsible for some of the highest rates of morbidity and mortality in socio-economically disadvantaged populations.

Ashutosh K Pathak, Justine C Shiau, Rafael C S Freitas, Dennis E Kyle. One Health. 2023 Jun 9:17:100582. doi: 10.1016/j.onehlt.2023.100582. eCollection 2023 Dec.

The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence

Mosquitoes shift from detritus-feeding larvae to blood-feeding adults that can vector pathogens to humans and other vertebrates. The sugar and blood meals adults consume are rich in carbohydrates and protein but are deficient in other nutrients including B vitamins. Facultatively hematophagous insects like mosquitoes have been hypothesized to avoid B vitamin deficiencies by carryover of resources from the larval stage. However, prior experimental studies have also used adults with a gut microbiota that could provision B vitamins. Here, we used Aedes aegypti, which is the primary vector of dengue virus (DENV), to ask if carryover effects enable normal function in adults with no microbiota. We show that adults with no gut microbiota produce fewer eggs, live longer with lower metabolic rates, and exhibit reduced DENV vector competence but are rescued by provisioning B vitamins or recolonizing the gut with B vitamin autotrophs. We conclude carryover effects do not enable normal function.

Ruby E Harrison, Xiushuai Yang, Jai Hoon Eum, Vincent G Martinson, Xiaoyi Dou, Luca Valzania, Yin Wang, Bret M Boyd, Mark R Brown, Michael R Strand. Commun Biol. 2023 Nov 13;6(1):1154. doi: 10.1038/s42003-023-05545-z.

VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.

Jorge Alvarez-Jarreta, et al. Nucleic Acids Res. 2023 Nov 11:gkad1003. doi: 10.1093/nar/gkad1003

Leishmania PNUTS discriminates between PP1 catalytic subunits through a RVxF-ΦΦ-F motif and polymorphisms in the PP1 C-tail and catalytic domain

Figure 1. PNUTS binding is specific for the PP1-8e isoform.

 

PP1 phosphatases associate with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (Pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF-ΦΦ-F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1-PNUTS and non-canonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N- and C-terminus for isoform specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82, and impact of PNUTS on the stability of complex components and function in Pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C-termini for independent binding of JBP3 and Wdr82, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating Pol II transcription in divergent protozoans where little is understood.

Yang Zhang, Robert Sabatini. J Biol Chem. 2023 Nov 3:105432. doi: 10.1016/j.jbc.2023.105432

Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma

Figure 1 Characteristics of NUMTs and NUPTs in T. gondii ME49
Fig. 1 Characteristics of NUMTs and NUPTs in T. gondii ME49

 

Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.

Sivaranjani Namasivayam, Cheng Sun, Assiatu B Bah, Jenna Oberstaller, Edwin Pierre-Louis, Ronald Drew Etheridge, Cedric Feschotte, Ellen J Pritham, Jessica C Kissinger. Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2308569120. doi: 10.1073/pnas.2308569120.

Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti

graphical abstract

Mosquitoes including Aedes aegypti are human disease vectors because females must blood feed to produce and lay eggs. Blood feeding triggers insulin-insulin growth factor signaling (IIS) which regulates several physiological processes required for egg development. A. aegypti encodes 8 insulin-like peptides (ILPs) and one insulin-like receptor (IR) plus ovary ecdysteroidogenic hormone (OEH) that also activates IIS through the OEH receptor (OEHR). In this study, we assessed the expression of A. aegypti ILPs and OEH during a gonadotropic cycle and produced each that were functionally characterized to further understand their roles in regulating egg formation. All A. aegypti ILPs and OEH were expressed during a gonadotropic cycle. Five ILPs (1, 3, 4, 7, 8) and OEH were specifically expressed in the head, while antibodies to ILP3 and OEH indicated each was released after blood feeding from ventricular axons that terminate on the anterior midgut. A subset of ILP family members and OEH stimulated nutrient storage in previtellogenic females before blood feeding, whereas most IIS-dependent processes after blood feeding were activated by one or more of the brain-specific ILPs and/or OEH. ILPs and OEH with different biological activities also exhibited differences in IIS as measured by phosphorylation of the IR, phosphoinositide 3-kinase/Akt kinase (AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK). Altogether, our results provide the first results that compare the functional activities of all ILP family members and OEH produced by an insect.

Kangkang Chen, Xiaoyi Dou, Jai Hoon Eum, Ruby A Harrison, Mark R Brown, Michael R Strand. Insect Biochem Mol Biol. 2023 Oct 30:104028. doi: 10.1016/j.ibmb.2023.104028.

Functional characterization of Microplitis demolitor bracovirus genes that encode nucleocapsid

Fig 2 Virion morphogenesis (phases 1–4) in calyx cells from newly emerged adult females injected with ds-eGFP (control) (A–D) or ds-vp39 (E–H).

 

Bracoviruses (BVs) are endogenized nudiviruses in parasitoid wasps of the microgastroid complex (order Hymenoptera: Family Braconidae). BVs produce replication-defective virions that adult female wasps use to transfer DNAs encoding virulence genes to parasitized hosts. Some BV genes are shared with nudiviruses and baculoviruses with studies of the latter providing insights on function, whereas other genes are only known from nudiviruses or other BVs which provide no functional insights. A proteomic analysis of Microplitis demolitor bracovirus (MdBV) virions recently identified 16 genes encoding nucleocapsid components. In this study, we further characterized most of these genes. Some nucleocapsid genes exhibited early or intermediate expression profiles, while others exhibited late expression profiles. RNA interference (RNAi) assays together with transmission electron microscopy indicated vp39HzNVorf9-like2HzNVorf93-likeHzNVorf106-likeHzNVorf118-likeand 27b are required to produce capsids with a normal barrel-shaped morphology. RNAi knockdown of vlf-1avlf-1b-1vlf-1b-2int-1, and p6.9-1 did not alter the formation of barrel-shaped capsids but each reduced processing of amplified proviral segments and DNA packaging as evidenced by the formation of electron translucent capsids. All of the genes required for normal capsid assembly were also required for proviral segment processing and DNA packaging. Collectively, our results deorphanize several BV genes with previously unknown roles in virion morphogenesis.IMPORTANCEUnderstanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.

Ange Lorenzi, Michael J Arvin, Gaelen R Burke, Michael R Strand. J Virol. 2023 Oct 25:e0081723. doi: 10.1128/jvi.00817-23.

Shotgun Kinetic Target-Guided Synthesis Approach Enables the Discovery of Small-Molecule Inhibitors against Pathogenic Free-Living Amoeba Glucokinases

Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a “shotgun” approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.

Mintesinot Kassu, Prakash T Parvatkar, Jillian Milanes, Neil P Monaghan, Chungsik Kim, Matthew Dowgiallo, Yingzhao Zhao, Ami H Asakawa, Lili Huang, Alicia Wagner, Brandon Miller, Karissa Carter, Kayleigh F Barrett, Logan M Tillery, Lynn K Barrett, Isabelle Q Phan, Sandhya Subramanian, Peter J Myler, Wesley C Van Voorhis, James W Leahy, Christopher A Rice, Dennis E Kyle, James Morris, Roman Manetsch. ACS Infect Dis. 2023 Oct 11. doi: 10.1021/acsinfecdis.3c00284.