Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Lipophilic bisphosphonates reduced cyst burden and ameliorated hyperactivity of mice chronically infected with Toxoplasma gondii

Fig 1 Lipophilic bisphosphonates inhibited the viability of in vitro differentiated bradyzoites.

The current treatments for toxoplasmosis are only active against fast-growing tachyzoites, present in acute infections, with little effect on slow-growing bradyzoites within tissue cysts, present in latent chronic infections. The mitochondrion of Toxoplasma gondii is essential for its survival, and one of the major anti-parasitic drugs, atovaquone, inhibits the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase site. Coenzyme Q (also known as ubiquinone [UQ]) consists of a quinone head and a lipophilic, isoprenoid tail that anchors UQ to membranes. The synthesis of the isoprenoid unit is essential for cell growth and is inhibited by lipophilic bisphosphonates, which inhibit the parasite growth. In this work, we investigated the effect of lipophilic bisphosphonates on the chronic stages of T. gondii. We discovered that three lipophilic bisphosphonates (BPH-1218, BPH-1236, and BPH-1238), effective for the acute infection, were also effective in controlling the development of chronic stages. We showed effectiveness by testing them against in vitro cysts and in vivo derived tissue cysts and, most importantly, these compounds reduced the cyst burden in the brains of chronically infected mice. We monitored the activity of infected mice non-invasively and continuously with a novel device termed the CageDot. A decrease in activity accompanied the acute phase, but mice recovered to normal activity and showed signs of hyperactivity when the chronic infection was established. Moreover, treatment with atovaquone or BPH-1218 ameliorated the hyperactivity observed during the chronic infection.IMPORTANCETreatment for toxoplasmosis is challenged by a lack of effective drugs to eradicate the chronic stages. Most of the drugs currently used are poorly distributed to the central nervous system, and they trigger allergic reactions in a large number of patients. There is a compelling need for safe and effective treatments for toxoplasmosis. Bisphosphonates (BPs) are analogs of inorganic pyrophosphate and are used for the treatment of bone disorders. BPs target the isoprenoid pathway and are effective against several experimental parasitic infections. Some lipophilic BPs can specifically inhibit the mitochondrial activity of Toxoplasma gondii by interfering with the mechanism by which ubiquinone is inserted into the inner mitochondrial membrane. In this work, we present the effect of three lipophilic BPs against T. gondii chronic stages. We also present a new strategy for the monitoring of animal activity during disease and treatment that is non-invasive and continuous.

Melissa A Sleda, Zaid F Pitafi, WenZhan Song, Eric Oldfield, Silvia N J Moreno. mBio. 2024 Oct 10:e0175624. doi: 10.1128/mbio.01756-24

Regional changes of maximum dose insecticide responses in diamondback moth (Lepidoptera: Plutellidae) populations from Georgia and Florida, USA

Maximum dose bioassays were conducted to assess the efficacy of multiple registered active ingredients for diamondback moth (DBM), Plutella xylostella (L.), control in Georgia and Florida from 2021 to 2023 as a follow-up to an earlier study. Low efficacy (<40% mortality) was recorded for the highest labeled rate of Bacillus thuringiensis var. kurstaki strain ATBS-351 in Georgia, as well as chlorantraniliprole, cyantraniliprole, and cyclaniliprole in Georgia and Florida. The active ingredients with the highest efficacy (>80% mortality) in both states were naled, emamectin benzoate, and spinetoram. Independent analysis of data by state indicated that the efficacy of bifenthrin, chlorantraniliprole, cyantraniliprole, tolfenpyrad, and methomyl was higher in Florida populations than in Georgia populations. In addition, a comparison of these data to a recent DBM maximum dose survey in the same region suggested that these DBM populations have rapidly developed high levels of resistance to cyantraniliprole and cyclaniliprole. This work provides growers in the region with a recent ranking of insecticide efficacy that documents the loss of control for certain active ingredients, which assists pest managers in the planning of ongoing insecticide rotations for DBM resistance management.

Thomas P Dunn, Paulo S G Cremonez, Amanda Furuya, Will S Brown, Mirela M Nagaoka, Chase B Powell, Alton N Sparks Jr, Hugh Smith, David G Riley, Donald E Champagne. J Econ Entomol. 2024 Oct 10:toae218. doi: 10.1093/jee/toae218.

Acidocalcisome localization of membrane transporters and enzymes in Trypanosoma brucei

FIG 1 Immunofluorescence microscopy of six membrane transporters.

 

Acidocalcisomes of Trypanosoma brucei are membrane-bounded organelles characterized by their acidity and high content of polyphosphate and cations, like calcium and magnesium. They have important roles in cation and phosphorus storage, osmoregulation, autophagy initiation, calcium signaling, and virulence. Acidocalcisomes of T. brucei possess several membrane transporters, pumps, and channels, some of which were identified by proteomic and immunofluorescence analyses and validated as acidocalcisome proteins by their colocalization with the acidocalcisome marker vacuolar proton pyrophosphatase (VP1). Here, we report that a set of membrane transporters and enzymes, which were proposed to be present in acidocalcisomes by the morphological appearance of tagged proteins, colocalize with VP1, validating their character as acidocalcisome proteins.

Importance: Acidocalcisomes are acidic organelles rich in polyphosphate and calcium present in a variety of eukaryotes and important for osmoregulation and calcium signaling. Several proteins were postulated to localize to acidocalcisomes based on their morphological characteristics. We provide validation of the localization of ten10 acidocalcisome proteins by their co-localization with enzymatic markers. These findings reveal the roles of acidocalcisomes in the storage of toxic metals, and the presence of enzymes involved in palmitoylation and polyphosphate metabolism.

Guozhong Huang, Roberto Docampo. Microbiol Spectr. 2024 Oct 9:e0112824. doi: 10.1128/spectrum.01128-24.

Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion

Fig 1. RON11 is essential for intraerythrocytic growth.

 

Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBCs) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from 2 specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains 7 transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only 1 rhoptry each. The single rhoptry in RON11-deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11-deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11-deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.

David Anaguano, Opeoluwa Adewale-Fasoro, Grace W Vick, Sean Yanik, James Blauwkamp, Manuel A Fierro, Sabrina Absalon, Prakash Srinivasan, Vasant Muralidharan. PLoS Biol. 2024 Sep 18;22(9):e3002801. doi: 10.1371/journal.pbio.3002801. eCollection 2024 Sep.

A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria

A systems biology approach for antimalarial drug discovery.

 

We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.

Z Chahine, S Abel, T Hollin, G L Barnes, J H Chung, M E Daub, I Renard, J Y Choi, P Vydyam, A Pal, M Alba-Argomaniz, C A S Banks, J Kirkwood, A Saraf, I Camino, P Castaneda, M C Cuevas, J De Mercado-Arnanz, E Fernandez-Alvaro, A Garcia-Perez, N Ibarz, S Viera-Morilla, J Prudhomme, C J Joyner, A K Bei, L Florens, C Ben Mamoun, C D Vanderwal, K G Le Roch. Science. 2024 Sep 27;385(6716):eadm7966. doi: 10.1126/science.adm7966.

Current Status of the Diagnosis of Brugia spp. Infections

Filarial nematodes of the genus Brugia include parasites that are significant to both human and veterinary medicine. Accurate diagnosis is essential for managing infections by these parasites and supporting elimination programs. Traditional diagnostic methods, such as microscopy and serology, remain vital, especially in resource-limited settings. However, advancements in molecular diagnostics, including nucleic acid amplification tests, offer enhanced sensitivity and specificity. These techniques are becoming increasingly field-friendly, expanding their applications in diagnostics. By refining existing methods, developing novel biomarkers, and understanding the zoonotic potential of various Brugia species, it is possible to improve control measures and better support elimination efforts.

Christopher C Evans, Nils Pilotte, Andrew R Moorhead. Pathogens. 2024 Aug 23;13(9):714. doi: 10.3390/pathogens13090714.

The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis

Fig 5 Immunofluorescence analysis of PIGJ-3×HA shows its localization both inside and outside the rER.

 

Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.

Julia A Alvarez, Elisabet Gas-Pascual, Sahil Malhi, Juan C Sánchez-Arcila, Ferdinand Ngale Njume, Hanke van der Wel, Yanlin Zhao, Laura García-López, Gabriella Ceron, Jasmine Posada, Scott P Souza, George S Yap, Christopher M West, Kirk D C Jensen. mBio. 2024 Sep 20:e0052724. doi: 10.1128/mbio.00527-24

 

Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation

Figure 8. Immunolocalization of FBXO13-HA3 and FBXO14-HA3.

 

A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to a hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels, suggested the involvement of the SCF in their degradation. The effect was selective, because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.

Msano N Mandalasi, Elisabet Gas-Pascual, Carlos Gustavo Baptista, Bowen Deng, Hanke van der Wel, John A W Kruijtzer, Geert-Jan Boons, Ira J Blader, Christopher M West. J Biol Chem. 2024 Sep 20:107801. doi: 10.1016/j.jbc.2024.107801.

A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death

Fig 1 IFNγ stimulation following infection is countered by MYR1, preventing early tachyzoite egress and host cell death.

 

In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host’s immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24’s action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.

Henry B, Phillips AJ, Sibley LD, Rosenberg A. 2024. mBio 0:e02124-24. https://doi.org/10.1128/mbio.02124-24

Inorganic Polyphosphate Is in the Surface of Trypanosoma cruzi but Is Not Significantly Secreted

Figure 2. Presence of surface polyP in T. cruzi different stages.

Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that can lead to the development of cardiac fibrosis, which is characterized by the deposition of extracellular matrix (ECM) components in the interstitial region of the myocardium. The parasite itself can induce myofibroblast differentiation of cardiac fibroblast in vitro, leading to increased expression of ECM. Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that can also induce myofibroblast differentiation and deposition of ECM components and is highly abundant in T. cruzi. PolyP can modify proteins post-translationally by non-enzymatic polyphosphorylation of lysine residues of poly-acidic, serine-(S) and lysine (K)-rich (PASK) motifs. In this work, we used a bioinformatics screen and identified the presence of PASK domains in several surface proteins of T. cruzi. We also detected polyP in the external surface of its different life cycle stages and confirmed the stimulation of host cell fibrosis by trypomastigote infection. However, we were not able to detect significant secretion of the polymer or activation of transforming growth factor beta (TGF-β), an important factor for the generation of fibrosis by inorganic polyP- or trypomastigote-conditioned medium.

Logan P Crowe, Anna Gioseffi, Mayara S Bertolini, Roberto Docampo. Pathogens. 2024 Sep 9;13(9):776. doi: 10.3390/pathogens13090776.