Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Identification of a viral gene essential for the genome replication of a domesticated endogenous virus in ichneumonid parasitoid wasps

Fig 6. RNAi knockdown of U16.
RNAi knockdown of U16.

 

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor “domesticated endogenous viruses” (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposotor didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.

Ange Lorenzi, Fabrice Legeai, Véronique Jouan, Pierre-Alain Girard, Michael R Strand, Marc Ravallec, Magali Eychenne, Anthony Bretaudeau, Stéphanie Robin, Jeanne Rochefort, Mathilde Villegas, Gaelen R Burke, Rita Rebollo, Nicolas Nègre, Anne-Nathalie Volkoff. PLoS Pathog. 2024 Apr 25;20(4):e1011980. doi: 10.1371/journal.ppat.1011980.

 

Extended blood stage sensitivity profiles of Plasmodium cynomolgi to doxycycline and tafenoquine, as a model for Plasmodium vivax

Figure 1 Mean IC50 concentrations (nM) of chloroquine, doxycycline, piperaquine, and tafenoquine using 48-, 72- and 96-hour assays.
Mean IC50 concentrations (nM) of chloroquine, doxycycline, piperaquine, and tafenoquine using 48-, 72- and 96-hour assays.

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.

Peter Christensen, Rosy Cinzah, Rossarin Suwanarusk, Adeline Chiew Yen Chua, Osamu Kaneko, Dennis E Kyle, Htin Lin Aung, Jessica Matheson, Pablo Bifani, Laurent Rénia, Gregory M Cook, Georges Snounou, Bruce Russell. Antimicrob Agents Chemother. 2024 Apr 8:e0028024. doi: 10.1128/aac.00280-24.

The Unfortunate Abundance of Trypanosoma cruzi in Naturally Infected Dogs and Monkeys Provides Unique Opportunities to Advance Solutions for Chagas Disease

Trypanosoma cruzi, the protozoan parasite and cause of Chagas disease, is widely distributed in many vertebrate and triatomine species throughout North, Central, and South America. Variations in housing quality largely determines human infection risk in the Americas. However, the southern U.S. contains widespread, infected triatomine vectors and captive species and domesticated animals with active T. cruzi infection or at high risk of becoming infected and developing Chagas disease. There is a critical need for better detection and intervention strategies, principally focused on human infection throughout the Americas, but mainly in the U.S., for high-value dogs employed in government and other work. In addition to this economic impact, the concentration of largely unavoidable T. cruzi infections in U.S. dogs provides an incomparable opportunity to answer questions related to T. cruzi infection and Chagas disease that are impossible or unethical to address in humans. As the course of T. cruzi infection and Chagas disease, the immune response to infection, and the response to therapeutics are highly similar across the range of mammalian host species, information obtained from studies in other species can directly inform researchers on how to best detect, manage, and treat T. cruzi infection and Chagas disease in humans.

Rick L. Tarleton, Ashley B. Saunders, Bruno Lococo, Maria Gabriela Alvarez Gianni, Susana Laucella, Carolyn L. Hodo, Gregory K. Wilkerson, Sarah A. Hamer. Zoonoses. 2024. Vol. 4(1). DOI: 10.15212/ZOONOSES-2024-0005

What is new in FungiDB: a web-based bioinformatics platform for omics-scale data analysis for fungal and oomycete species

New data in FungiDB since FungiDB Release 37.
New data in FungiDB since FungiDB Release 37.

 

FungiDB (https://fungidb.org) serves as a valuable online resource that seamlessly integrates genomic and related large-scale data for a wide range of fungal and oomycete species. As an integral part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org), FungiDB continually integrates both published and unpublished data addressing various aspects of fungal biology. Established in early 2011, the database has evolved to support 674 datasets. The datasets include over 300 genomes spanning various taxa (e.g. Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, as well as Albuginales, Peronosporales, Pythiales, and Saprolegniales). In addition to genomic assemblies and annotation, over 300 extra datasets encompassing diverse information, such as expression and variation data, are also available. The resource also provides an intuitive web-based interface, facilitating comprehensive approaches to data mining and visualization. Users can test their hypotheses and navigate through omics-scale datasets using a built-in search strategy system. Moreover, FungiDB offers capabilities for private data analysis via the integrated VEuPathDB Galaxy platform. FungiDB also permits genome improvements by capturing expert knowledge through the User Comments system and the Apollo genome annotation editor for structural and functional gene curation. FungiDB facilitates data exploration and analysis and contributes to advancing research efforts by capturing expert knowledge for fungal and oomycete species.

Evelina Y Basenko, Achchuthan Shanmugasundram, Ulrike Böhme, David Starns, Paul A Wilkinson, Helen R Davison, Kathryn Crouch, Gareth Maslen, Omar S Harb, Beatrice Amos, Mary Ann McDowell, Jessica C Kissinger, David S Roos, Andrew Jones. Genetics. 2024 Mar 26:iyae035. doi: 10.1093/genetics/iyae035

Positive clinical outcome using a modified dosing regimen of benznidazole in dogs at high risk for infection or acutely infected with Trypanosoma cruzi

Serum cardiac troponin I results for the 4 dogs.
Serum cardiac troponin I results for the 4 dogs.

 

Trypanosoma cruzi infection in dogs can cause heart failure and sudden death with few treatment options available. A litter of 4 dogs living in a T cruzi endemic area were randomized to prophylaxis and nonprophylaxis groups as part of a study evaluating a modified benznidazole dosing regimen administered twice weekly to prevent T cruzi infection during a vector transmission season. The 2 dogs that received prophylaxis remained healthy without T cruzi infection or cardiac disease for >2 years. One dog that did not receive prophylaxis died unexpectedly with acute T cruzi-induced pancarditis, and the second dog tested positive for T cruzi and developed complex arrhythmias with markedly increased cardiac troponin I and improved with a higher benznidazole treatment dose. Although the small sample size precludes definitive conclusions, we describe the potential clinical benefit of prophylactic and early treatment with modified benznidazole dosing regimens for dogs with T cruzi infection.

Sukjung Lim, Stephanie Collins, Sarah A Hamer, Rick L Tarleton, Ashley B Saunders. J Vet Intern Med. 2024 Mar 18. doi: 10.1111/jvim.17028.

Genomic and virulence analysis of in vitro cultured Cryptosporidium parvum

Fig 1. Diagramatic section through the hollow fiber bioreactor.
Fig 1. Diagramatic section through the hollow fiber bioreactor.

 

Recent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites. We find low-level sequence variation that is consistent with that observed in calf-passaged parasites. Further using a calf model infection, oocysts obtained from the HFB caused diarrhea of the same volume, duration and oocyst shedding intensity as in vivo passaged parasites.

Nigel Yarlett, Mary Morada, Deborah A Schaefer, Kevin Ackman, Elizabeth Carranza, Rodrigo de Paula Baptista, Michael W Riggs, Jessica Kissinger. PLoS Pathog. 2024 Feb 28;20(2):e1011992. doi: 10.1371/journal.ppat.1011992.

Regulation of Calcium entry by cyclic GMP signaling in Toxoplasma gondii

Figure 1. Calcium entry through the plasma membrane of extracellular T. gondii tachyzoites.
Figure 1. Calcium entry through the plasma membrane of extracellular T. gondii tachyzoites.

 

Ca2+ signaling impacts almost every aspect of cellular life. Ca2+ signals are generated through the opening of ion channels that permit the flow of Ca2+ down an electrochemical gradient. Cytosolic Ca2+ fluctuations can be generated through Ca2+ entry from the extracellular milieu or release from intracellular stores. In Toxoplasma gondii, Ca2+ ions play critical roles in several essential functions for the parasite like invasion of host cells, motility and egress. Plasma membrane Ca2+ entry in T. gondii was previously shown to be activated by cytosolic calcium and inhibited by the voltage-operated Ca2+ channel blocker nifedipine. However, Ca2+ entry in T. gondii did not show the classical characteristics of store regulation. In this work, we characterized the mechanism by which cytosolic Ca2+ regulates plasma membrane Ca2+ entry in extracellular T. gondii tachyzoites loaded with the Ca2+ indicator Fura 2. We compared the inhibition by nifedipine with the effect of the broad spectrum TRP channel inhibitor, anthranilic acid or ACA and we find that both inhibitors act on different Ca2+ entry activities. We demonstrate, using pharmacological and genetic tools, that an intracellular signaling pathway engaging cyclicGMP (cGMP), protein kinase G (PKG), Ca2+ and the phosphatidyl inositol phospholipase C (PI-PLC) affects Ca2+ entry and we present a model for crosstalk between cGMP and cytosolic Ca2+ for the activation of T. gondii‘s lytic cycle traits.

Miryam A Hortua Triana, Karla M Márquez-Nogueras, Mojtaba Sedigh Fazli, Shannon Quinn, Silvia N J Moreno. J Biol Chem. 2024 Feb 19:105771. doi: 10.1016/j.jbc.2024.105771

In Vitro Antimalarial Activity of Trichothecenes against Liver and Blood Stages of Plasmodium Species

graphical representation of abstract

Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.

Prakash T Parvatkar, Steven P Maher, Yingzhao Zhao, Caitlin A Cooper, Sagan T de Castro, Julie Péneau, Amélie Vantaux, Benoît Witkowski, Dennis E Kyle, Roman Manetsch. J Nat Prod. 2024 Jan 23. doi: 10.1021/acs.jnatprod.3c01019.

Genetic crosses within and between species of Cryptosporidium

Figure 1 PheRS can be used as a selection marker for stable transgenesis.
PheRS can be used as a selection marker for stable transgenesis.

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.

Sebastian Shaw, Ian S Cohn, Rodrigo P Baptista, Guoqin Xia, Bruno Melillo, Fiifi Agyabeng-Dadzie, Jessica C Kissinger, Boris Striepen. Proc Natl Acad Sci USA. 2024 Jan 2;121(1):e2313210120. doi: 10.1073/pnas.2313210120.

Aptamer-Based Imaging of Polyisoprenoids in the Malaria Parasite

Figure 1. Schemes of the positive and negative selection cycles are illustrated.
Figure 1. Schemes of the positive and negative selection cycles are illustrated.

 

Dolichols are isoprenoid end-products of the mevalonate and 2C-methyl-D-erythritol-4-phosphate pathways. The synthesis of dolichols is initiated with the addition of several molecules of isopentenyl diphosphate to farnesyl diphosphate. This reaction is catalyzed by a cis-prenyltransferase and leads to the formation of polyprenyl diphosphate. Subsequent steps involve the dephosphorylation and reduction of the α-isoprene unit by a polyprenol reductase, resulting in the generation of dolichol. The size of the dolichol varies, depending on the number of isoprene units incorporated. In eukaryotes, dolichols are synthesized as a mixture of four or more different lengths. Their biosynthesis is predicted to occur in the endoplasmic reticulum, where dolichols play an essential role in protein glycosylation. In this study, we have developed a selection of aptamers targeting dolichols and enhanced their specificity by incorporating fatty acids for negative selection. One aptamer showed high enrichment and specificity for linear polyisoprenoids containing at least one oxygen atom, such as an alcohol or aldehyde, in the α-isoprene unit. The selected aptamer proved to be a valuable tool for the subcellular localization of polyisoprenoids in the malaria parasite. To the best of our knowledge, this is the first time that polyisoprenoids have been localized within a cell using aptamer-based imaging techniques.

Flavia M Zimbres, Emilio F Merino, Grant J Butschek, Joshua H Butler, Frédéric Ducongé, Maria B Cassera. Molecules. 2023 Dec 28;29(1):178. doi: 10.3390/molecules29010178.