Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Sam Kurup

Kurup wins prestigious PATH award for groundbreaking malaria research

Assistant Professor Samarchith “Sam” Kurup is the first UGA researcher to receive the Burroughs Wellcome Fund’s Investigators in Pathogenesis of Infectious Disease (PATH) award. Kurup studies the parasites that cause malaria and how they penetrate the body’s defenses, which could lead to more effective therapeutics. (Photo by Lauren Corcino) Every year, malaria evades the immune …

Regulatory T cell memory: implications for malaria

Regulatory T cells (Tregs) can persist as memory cells (mTregs) in both infectious and non-infectious settings. However, their functional behavior, phenotypic stability, and suppressive properties upon antigen re-exposure remain poorly understood. Emerging evidence suggests that mTregs exhibit enhanced proliferation and suppressive capacity upon re-encountering the same antigen, a feature that may be critical in recurrent …

Type I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria

Plasmodium parasites undergo development and replication within hepatocytes before infecting erythrocytes and initiating clinical malaria. Although type I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers …

Hepatocytes and the art of killing Plasmodium softly

  The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes …

Inherently Reduced Expression of ASC Restricts Caspase-1 Processing in Hepatocytes and Promotes Plasmodium Infection

  Inflammasome-mediated caspase-1 activation facilitates innate immune control of Plasmodium in the liver, thereby limiting the incidence and severity of clinical malaria. However, caspase-1 processing occurs incompletely in both mouse and human hepatocytes and precludes the generation of mature IL-1β or IL-18, unlike in other cells. Why this is so or how it impacts Plasmodium …

Generating Genetically Modified Plasmodium berghei Sporozoites

Malaria is a deadly disease caused by the parasite Plasmodium and is transmitted through the bite of female Anopheles mosquitoes. The sporozoite stage of Plasmodium deposited by mosquitoes in the skin of vertebrate hosts undergoes a phase of mandatory development in the liver before initiating clinical malaria. We know little about the biology of Plasmodium …

All the pieces matter: UGA researchers collaborate to solve malaria puzzle

Super-resolution microscopy showing malaria parasites infecting human red blood cells. credit: Muthugapatti Kandasamy, Biomedical Microscopy Core They say what doesn’t kill you makes you stronger. Whoever coined that adage had probably never heard of Plasmodium. It’s a microscopic parasite, invisible to the naked eye but common in tropical and subtropical regions throughout the world. Each …

AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that …

Cryopreservation of Plasmodium Sporozoites

Cryopreservation protocol for Plasmodium sporozoites. Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for …