Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Michael Strand

Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes

Background: Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus.

Methods: Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured.

Results: The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior.

Conclusions: Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.

Ruby E Harrison, Kangkang Chen, Lilith South, Ange Lorenzi, Mark R Brown, Michael R Strand. Parasit Vectors. 2022 Apr 12;15(1):127. doi: 10.1186/s13071-022-05252-4.

Insulin-like peptide 3 stimulates hemocytes to proliferate in anautogenous and facultatively autogenous mosquitoes

Most mosquito species are anautogenous, which means they must blood feed on a vertebrate host to produce eggs, while a few are autogenous and can produce eggs without blood feeding. Egg formation is best understood in the anautogenous mosquito Aedes aegypti, where insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH) and 20-hydroxyecdysone (20E) interact to regulate gonadotrophic cycles. Circulating hemocytes also approximately double in abundance in conjunction with a gonadotrophic cycle, but the factors responsible for stimulating this increase remain unclear. Focusing on Ae. aegypti, we determined that hemocyte abundance similarly increased in intact blood-fed females and decapitated blood-fed females that were injected with ILP3, whereas OEH, 20E or heat-killed bacteria had no stimulatory activity. ILP3 upregulated insulin-insulin growth factor signaling in hemocytes, but few genes – including almost no transcripts for immune factors – were differentially expressed. ILP3 also stimulated circulating hemocytes to increase in two other anautogenous (Anopheles gambiae and Culex quinquefasciatus) and two facultatively autogenous mosquitoes (Aedes atropalpus and Culex pipiens molestus), but had no stimulatory activity in the obligately autogenous mosquito Toxorhynchites amboinensis. Altogether, our results identify ILPs as the primary regulators of hemocyte proliferation in association with egg formation, but also suggest this response has been lost in the evolution of obligate autogeny.

Ellen O Martinson, Kangkang Chen, Luca Valzania, Mark R Brown, Michael R Strand. J Exp Biol. 2022 Mar 1;225(5):jeb243460. doi: 10.1242/jeb.243460.

Insulin-like peptide 3 stimulates hemocytes to proliferate in anautogenous and facultatively autogenous mosquitoes

Most mosquito species are anautogenous, which means they must blood feed on a vertebrate host to produce eggs, while a few are autogenous and can produce eggs without blood feeding. Egg formation is best understood in the anautogenous mosquito Aedes aegypti where insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH) and 20-hydroxyecdysone (20E) interact to regulate gonadotrophic cycles. Circulating hemocytes also approximately double in abundance in conjunction with a gonadotrophic cycle but the factors responsible for stimulating this increase remain unclear. Focusing on Ae. aegypti, we determined that hemocyte abundance similarly increased in intact blood-fed females and decapitated blood-fed females that were injected with ILP3, whereas OEH, 20E, or heat-killed bacteria had no stimulatory activity. ILP3 upregulated insulin-insulin growth factor signaling in hemocytes but few genes, including almost no transcripts for immune factors, were differentially expressed. ILP3 also stimulated circulating hemocytes to increase in two other anautogenous (Anopheles gambiae and Culex quinquefasciatus) and two facultatively autogenous mosquitoes (Aedes atropalpus and Culex pipiens molestus), but had no stimulatory activity in the obligately autogenous mosquito Toxorhynchites amboinensis. Altogether, our results identify ILPs as the primary regulators of hemocyte proliferation in association with egg formation, but also suggest this response has been lost in the evolution of obligate autogeny.

Ellen O Martinson, Kangkang Chen, Luca Valzania, Mark R Brown, Michael R Strand. J Exp Biol. 2022 Feb 7;jeb.243460. doi: 10.1242/jeb.243460.

The complete genome of Chelonus insularis reveals dynamic arrangement of genome components in parasitoid wasps that produce bracoviruses

Bracoviruses (BVs) are endogenized nudiviruses in parasitoid wasps of the microgastroid complex (family Braconidae). Microgastroid wasps have coopted nudivirus genes to produce replication-defective virions that females use to transfer virulence genes to parasitized hosts. The microgastroid complex further consists of six subfamilies and ∼50,000 species but current understanding of BV gene inventories and organization primarily derives from analysis of two wasp species in the subfamily Microgastrinae (Microplitis demolitor and Cotesia congregata) that produce M. demolitor BV (MdBV) and C. congregata BV (CcBV). Notably, several genomic features of MdBV and CcBV remain conserved since divergence of M. demolitor and C. congregata ∼53 million years ago (MYA). However, it is unknown whether these conserved traits more broadly reflect BV evolution, because no complete genomes exist for any microgastroid wasps outside of the Microgastrinae. In this regard, the subfamily Cheloninae is of greatest interest because it diverged earliest from the Microgastrinae (∼85 MYA) after endogenization of the nudivirus ancestor. Here, we present the complete genome of Chelonus insularis, which is an egg-larval parasitoid in the Cheloninae that produces C. insularis BV (CinsBV). We report that the inventory of nudivirus genes in C. insularis is conserved but are dissimilarly organized when compared to M. demolitor and C. congregata. Reciprocally, CinsBV proviral segments share organizational features with MdBV and CcBV but virulence gene inventories exhibit almost no overlap. Altogether, our results point to the functional importance of a conserved inventory of nudivirus genes and a dynamic set of virulence genes for the successful parasitism of hosts. Our results also suggest organizational features previously identified in MdBV and CcBV are likely not essential for BV virion formation.

Significance Bracoviruses are a remarkable example of virus endogenization, because large sets of genes from a nudivirus ancestor continue to produce virions that thousands of wasp species rely upon to parasitize hosts. Understanding how these genes interact and have been coopted by wasps for novel functions is of broad interest in the study of virus evolution. This manuscript characterizes bracovirus genome components in the parasitoid wasp Chelonus insularis, which together with existing wasp genomes captures a large portion of the diversity among wasp species that produce bracoviruses. Results provide new information about how bracovirus genome components are organized in different wasps while also providing additional insights on key features required for function.

Meng Mao, Michael R Strand, Gaelen R Burke. J Virol. 2022 Jan 5;JVI0157321. doi: 10.1128/JVI.01573-21.

Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors

Animal genomes commonly contain genes or sequences that have been acquired from different types of viruses. The vast majority of these endogenous virus elements (EVEs) are inactive or consist of only a small number of components that show no evidence of cooption for new functions or interaction. Unlike most EVEs, bracoviruses (BVs), ichnoviruses (IVs) and virus-like particles (VLPs) in parasitoid wasps have evolved through retention and interaction of many genes from virus ancestors. Here, we discuss current understanding of BV, IV and VLP evolution along with associated implications for what constitutes a virus. We suggest that BVs and IVs are domesticated endogenous viruses (DEVs) that differ in several important ways from other known EVEs.

Jean-Michel Drezen, Annie Bézier, Gaelen R Burke, Michael R Strand. Curr Opin Insect Sci. 2021 Dec 22;S2214-5745(21)00132-2. doi: 10.1016/j.cois.2021.12.003.

Identifying bracovirus and ichnovirus genes involved in virion morphogenesis

Bracoviruses (BVs) and ichnoviruses (IVs) evolved from different endogenized viruses but through convergence have been coopted by parasitoids in the families Braconidae and Ichneumonidae for similar functions in parasitizing hosts. Experimentally studying the role of endogenized viral genes in virion morphogenesis remains a key challenge in the study of BVs and IVs. Here we summarize how multiomics, electron microscopy, and RNA interference (RNAi) methods have provided new insights about BV and IV gene function.

Ange Lorenzi, Michael R Strand, Gaelen R Burke, Anne-Nathalie Volkoff. Curr Opin Insect Sci. 2021 Nov 25;S2214-5745(21)00127-9. doi: 10.1016/j.cois.2021.11.006.

Trainee Spotlight: Benjamin Phipps

Benjamin Phipps

Benjamin Phipps is an NIH T32 trainee in Michael Strand‘s laboratory. Originally from Woodland, California, Benjamin earned his bachelor’s degrees in Spanish and biology and a minor in chemistry from the University of North Texas in May 2019. While at UNT, he studied the influence of mixed vehicle emissions on regulation of the renin-angiotensin system with Dr. Amie Lund and programmed translational frameshifts in Streptomyces bacteriophages with Dr. Lee Hughes. Benjamin earned research support and two travel grants to report his findings for his undergraduate projects. In August 2019, he enrolled in the Integrated Life Sciences (ILS) program at UGA and completed several laboratory rotations in parasitology before joining the Strand Research Group. He has served as treasurer of the Genetics Graduate Student Association and currently serves in that role for the CTEGD GSA.

Why did you choose UGA?

I chose UGA for its strong track record in research and breadth of research topics. I enrolled at UGA through Integrated Life Sciences, a gateway Ph.D. program that allows incoming students to explore several life sciences departments before choosing one for their dissertation home. This allowed me to experience a greater range of research topics than if I had enrolled directly in a single department. I also developed an interest in parasitology in the last year of my undergraduate program and therefore was drawn to CTEGD, one of the largest and most active centers for parasitology research in the world.

What is your research focus/project and why are you interested in the topic?

Many mosquito species must feed on vertebrate blood to produce eggs, and thereby can transmit several blood-borne pathogens of humans. Malaria is by far the deadliest of these, killing hundreds of thousands of people each year. Suppressing mosquito populations is an attractive approach to curbing transmission of malaria. Two promising targets for limiting mosquito reproductive capacity are the communities of microorganisms that reside in the mosquito gut, which are thought to influence fecundity by aiding blood digestion, and hormones mobilized in response to the blood meal that regulate egg formation. Malaria parasites have an antagonistic relationship with mosquito gut microbes and exploit resources generated for egg production after the blood meal. My dissertation project focuses on how mosquito gut microbes influence malaria infection by modulating reproductive signaling. This research has the potential to identify microbial species that might be exploited for malaria control, as well as elucidate important functions of gut microbes in preventing infections in animals.

What are your future professional plans?

I am presently most interested in a career in academia because I enjoy mentorship and science writing, but I remain open to other opportunities.

What do you hope to do for your capstone experience? 

For my capstone experience, I would like to draw on my training in both parasitology and Spanish language to travel to Colombia or Venezuela, where malaria is declining but still endemic. Potential activities there would involve characterizing endemic anopheline populations and their vectorial capacity.

What is your favorite thing about UGA?

I really enjoy the collaborative atmosphere of life sciences at UGA. Groups such as CTEGD provide many opportunities to interact with students and faculty from diverse departments.

Any advice for a student interested in this field? 

Be sure to get involved in research as soon as possible, preferably early in your undergraduate program. Reach out to professors whose work interests you, as well as members of their team. It’s fine not to know what specific topics you want to pursue right away; your initial research experience will help you determine what interests you most, and there will be many opportunities to explore diverse fields in graduate school and beyond.

 

Support trainees like Benjamin by giving today to the Center for Tropical & Emerging Global Diseases.

[button size=’large’ style=” text=’Give Now’ icon=” icon_color=’BA0C2F’ link=’https://ctegd.uga.edu/give/’ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=” hover_background_color=” font_style=” font_weight=” text_align=’center’ margin=”]

Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids

Background: Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE.

Methods: We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages.

Results: Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae.

Conclusions: APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae.

Bret M Boyd, Germain Chevignon, Vilas Patel, Kerry M Oliver, Michael R Strand. Virol J. 2021 Nov 10;18(1):219. doi: 10.1186/s12985-021-01685-y.

Diet-Microbiota Interactions Alter Mosquito Development

Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota-diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor. In this study, we produced a gnotobiotic model that allowed us to examine how interactions between specific gut microbes and diets affect the fitness of Aedes aegypti, the yellow fever mosquito. Using a simplified seven-member community of bacteria (ALL7) and various laboratory and natural mosquito diets, we allowed larval mosquitoes to develop under different microbial and dietary conditions and measured the resulting time to adulthood and adult size. Larvae inoculated with the ALL7 or a more complex community developed similarly when fed nutrient-rich rat chow or fish food laboratory diets, whereas larvae inoculated with individual bacterial members of the ALL7 community exhibited few differences in development when fed a rat chow diet but exhibited large differences in performance when fed a fish food diet. In contrast, the ALL7 community largely failed to support the growth of larvae fed field-collected detritus diets unless supplemented with additional protein or yeast. Collectively, our results indicate that mosquito development and fitness are strongly contingent on both diet and microbial community composition.

Vincent G Martinson, Michael R Strand. Front Microbiol. 2021 Jun 8;12:650743. doi: 10.3389/fmicb.2021.650743. eCollection 2021.