Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Michael Strand

$1.5 million initiative to upgrade labs across campus

Michael Strand
A $1.5 million initiative to upgrade labs across campus is enabling faculty members such as Regents Professor Michael Strand to enhance their research productivity. (Photo by Dorothy Kozlowski/ UGA)

Athens, Ga. – Labs and research support spaces across campus will be getting an upgrade, thanks to a $1.5 million presidential initiative that seeks to build on the university’s dramatic growth in research activity.

Presidential renovation funds have been distributed to nine schools and colleges and will be used to upgrade labs and replace core equipment that enables faculty members to conduct research and be more competitive in seeking grant funding. Proposals were solicited from deans and chosen based on links to college and university strategic priorities, as well as implications for faculty recruitment efforts and grant funding opportunities.

 

“To advance the research mission of the university and attract and retain outstanding faculty, we must support state-of-the-art facilities that assist the faculty with their groundbreaking work,” said President Jere W. Morehead. “I am pleased the institution has been able to help several faculty with critical needs, thanks to this initiative.”

In the College of Agricultural and Environmental Sciences, an upgrade to an insectary that will be used to rear mosquitoes will enable Regents’ Professor and National Academy of Sciences member Michael Strand and several of his colleagues in the department of entomology to expand their research on infectious diseases such as malaria and dengue fever. “We’re going to be able to do a whole series of experiments that we currently can’t do,” Strand said, adding that the upgraded facility opens up new opportunities for grants.

Upgrades to the Sensory Evaluation and Product Development Lab in the College of Family and Consumer Sciences will enable assistant professor Ginnefer Cox to develop and evaluate new food product formulations more efficiently while also giving students hands-on experiences and facilitating industry partnerships. “This new space is going to have equipment that helps train students to be the next product developers,” Cox said. “The upgrades also create more opportunities to collaborate in research with food companies, which opens up opportunities for students to interact with them and obtain internships and permanent employment.”

In the department of physics and astronomy, part of the Franklin College of Arts and Sciences, renovation funds will aid in faculty recruitment by modernizing an outdated laboratory. “We’re really excited to have received this funding,” said department head Phillip Stancil. “The space has been unused for the last several years, and with this renovation it’ll be ready for a new experimentalist to move in.”

Other schools and colleges that have received funding through presidential renovation funds are the College of Engineering, College of Environment and Design, Odum School of Ecology, College of Public Health, College of Veterinary Medicine and the Warnell School of Forestry and Natural Resources.

Interim Senior Vice President for Academic Affairs and Provost Libby V. Morris noted that the lab renovation funds come at a time when sponsored research awards have increased by 34 percent over the past five years. It also coincides with recruitment initiatives that will bring up to 25 new faculty members to campus.

 

“Research activity at the University of Georgia has grown significantly in recent years, with strategic investments in faculty and facilities enabling discoveries that point the way to a healthier and more promising future,” Morris said.

Writer: Sam Fahmy, 706-583-0727, sfahmy@uga.edu

Proximal Remote Sensing to Non-destructively Detect and Diagnose Physiological Responses by Host Insect Larvae to Parasitism

As part of identifying and characterizing physiological responses and adaptations by insects, it is paramount to develop non-destructive techniques to monitor individual insects over time. Such techniques can be used to optimize the timing of when in-depth (i.e., destructive sampling of insect tissue) physiological or molecular analyses should be deployed. In this article, we present evidence that hyperspectral proximal remote sensing can be used effectively in studies of host responses to parasitism. We present time series body reflectance data acquired from individual soybean loopers (Chrysodeixis includens) without parasitism (control) or parasitized by one of two species of parasitic wasps with markedly different life histories: Microplitis demolitor, a solitary larval koinobiont endoparasitoid and Copidosoma floridanum, a polyembryonic (gregarious) egg-larval koinobiont endoparasitoid. Despite considerable temporal variation in reflectance data 1–9 days post-parasitism, the two parasitoids caused uniquely different host body reflectance responses. Based on reflectance data acquired 3–5 days post-parasitism, all three treatments (control larvae, and those parasitized by either M. demolitor or C. floridanum) could be classified with >85 accuracy. We suggest that hyperspectral proximal imaging technologies represent an important frontier in insect physiology, as they are non-invasive and can be used to account for important time scale factors, such as: minutes of exposure or acclimation to abiotic factors, circadian rhythms, and seasonal effects. Although this study is based on data from a host-parasitoid system, results may be of broad relevance to insect physiologists. Described approaches provide a non-invasive and rapid method that can provide insights into when to destructively sample tissue for more detailed mechanistic studies of physiological responses to stressors and environmental conditions.

Christian Nansen and Michael R. Strand. 2018. Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.01716

Trainee Spotlight: Ruby Harrison

trainee Ruby Harrison

NIH T32 trainee Ruby Harrison is a co-advised by Drs. Michael Strand and Mark Brown in the UGA Department of Entomology. She received a Bachelor’s of Science in Entomology from the University of Wisconsin-Madison in 2012 and lived in Madison an additional two years working with mosquitoes as a research assistant. Before coming to UGA to begin my doctoral studies, she spent a year in Gabon, Africa, working as a tropical ecology field technician.

Ruby’s research focus

Ruby studies mosquito-microbiome interactions. Currently, she is investigating the influence of the gut microbiome on mosquito reproductive processes. She also plans to begin exploring the role of the mosquito microbiome in deterring pathogen infection in the very near future.

“I chose this research focus because I was inspired by the research of a former graduate student of Dr. Strand’s, Dr. Kerri Coon. Kerri pioneered fascinating work on the influence of the microbiota on development in mosquitoes in the immature (larval) stage,” said Ruby. “I saw an opportunity to extend her work, to observe if the same bacterial signal essential to larval development is recapitulated in any way in the adult stage.”

More broadly, she sees insect-microbe interactions as a promising field which may offer new solutions for mosquito population control and reduction of pathogen transmission.

NIH T32 Fellowship helps trainees achieve their goals

Ultimately, Ruby hopes to build a career as a vector biologist. For the capstone experience provided by the NIH T32 Training Grant, she is interested in returning to francophone West or Central Africa to work with mosquitoes in the field.

“I am truly grateful to receive the T32 pre-doctoral training fellowship, which presents me the opportunity to interact more closely with the CTEGD, opens doors for possible collaboration, and will help me to pursue my research goals,” said Ruby.