Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: malaria

AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.

Camila Marques-da-Silva, Barun Poudel, Rodrigo P Baptista, Kristen Peissig, Lisa S Hancox, Justine C Shiau, Lecia L Pewe, Melanie J Shears, Thirumala-Devi Kanneganti, Photini Sinnis, Dennis E Kyle, Prajwal Gurung, John T Harty, Samarchith P Kurup. Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2210181120. doi: 10.1073/pnas.2210181120.

Cryopreservation of Plasmodium Sporozoites

Cryopreservation protocol for Plasmodium sporozoites.

Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.

Carson Bowers, Lisa Hancox, Kristen Peissig, Justine C. Shiau, Amélie Vantaux, Benoit Witkowski, Sivchheng Phal, Steven P. Maher, John T. Harty, Dennis E. Kyle, and Samarchith P. Kurup. Pathogens 2022, 11(12), 1487; https://doi.org/10.3390/pathogens11121487

Integrative genetic manipulation of Plasmodium cynomolgi reveals MultiDrug Resistance-1 Y976F associated with increased in vitro susceptibility to mefloquine

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized P. cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using CRISPR-Cas9 increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.

Kurt E Ward, Peter Christensen, Annie Racklyeft, Satish K Dhingra, Adeline C Y Chua, Caroline Remmert, Rossarin Suwanarusk, Jessica Matheson, Michael J Blackman, Osamu Kaneko, Dennis E Kyle, Marcus C S Lee, Robert W Moon, Georges Snounou, Laurent Rénia, David A Fidock, Bruce Russell, Pablo Bifani. J Infect Dis. 2022 Dec 7;jiac469. doi: 10.1093/infdis/jiac469. Online ahead of print.

Cephalotane-type C20 diterpenoids from Cephalotaxus fortunei var. alpina

Seventeen new cephalotane-type diterpenoids, fortalides A-Q (1-17), along with five known analogues, were isolated from the seeds of Cephalotaxus fortunei var. alpina. Their structures were determined by extensive spectroscopic methods, as well as electronic circular dichroism (ECD) and X-ray crystallographic data analyses. Some isolates exhibited unusual structural features that were first found in cephalotane-type diterpenoids, such as the occurrence of the 7-oxabicyclo[4.1.1]octane moiety in 14 and 15 and the cis-arrangement of 3-OH and Me-19 in 9. Besides, the antiplasmodial activity of these compounds was evaluated in this study.

Zhan-Peng Ge, Bin Zhou, Flavia M Zimbres, Reagan S Haney, Qun-Fang Liu, Yan Wu, Maria B Cassera, Jin-Xin Zhao, Jian-Min Yue. Org Biomol Chem. 2022 Nov 4. doi: 10.1039/d2ob01748b

Liver-stage fate determination in Plasmodium vivax parasites: Characterization of schizont growth and hypnozoite fating from patient isolates

Plasmodium vivax, one species of parasite causing human malaria, forms a dormant liver stage, termed the hypnozoite, which activate weeks, months or years after the primary infection, causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are only killed with drugs of the 8-aminoquinoline class, which are contraindicated in many vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in part, by the lack of robust methods to continuously culture and characterize this parasite. As a result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite formation, persistence, and activation are largely unknown. While previous reports have described vastly different liver-stage growth metrics attributable to which hepatocyte donor lot is used to initiate culture, a comprehensive assessment of how different P. vivax patient isolates behave in the same lots at the same time is logistically challenging. Using our primary human hepatocyte-based P. vivax liver-stage culture platform, we aimed to simultaneously test the effects of how hepatocyte donor lot and P. vivax patient isolate influence the fate of sporozoites and growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor lot can modulate hypnozoite formation rate, the P. vivax case is also an important determinant of the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be mostly influenced by hepatocyte donor lot. These results suggest that, while host hepatocytes harbor characteristics making them more- or less-supportive of a quiescent versus growing intracellular parasite, sporozoite fating toward hypnozoites is isolate-specific. Future studies involving these host-parasite interactions, including characterization of individual P. vivax strains, should consider the impact of culture conditions on hypnozoite formation, in order to better understand this important part of the parasite’s lifecycle.

Amélie Vantaux, Julie Péneau, Caitlin A Cooper, Dennis E Kyle, Benoit Witkowski, Steven P Maher. Front Microbiol. 2022 Sep 23;13:976606. doi: 10.3389/fmicb.2022.976606.

UGA researcher uncovers humans’ natural weapon against malaria

UGA’s Samarchith “Sam” Kurup, assistant professor of cellular biology, has been awarded a five-year National Institutes of Health grant to study the natural immune response to the Plasmodium parasite—which causes malaria—in liver cells. (photo credit: Lauren Corcino)

Samarchith “Sam” Kurup grew up in India, and he’s always been aware of the impact of malaria.

In 2020 there were an estimated 241 million cases of malaria worldwide and an estimated 627,000 deaths, according to a recently released World Health Organization Fact Sheet. Eighty percent of the malaria-related deaths in Africa are children under the age of 5. The relapsing nature of the disease leads to educational and employment loss that has long-term economic impacts for both the individual as well as society.

“Malaria is huge global problem,” said Kurup, a member of UGA’s Center for Tropical and Emerging Global Diseases. “Almost half of the world’s population is currently at risk of contracting malaria.”

Kurup began his training in veterinary medicine in India, where he became hooked on parasitology, then continued his studies at UGA. While pursuing his Ph.D. he worked in Rick Tarleton’s lab, studying a parasitic disease that affects both animals and humans—his first introduction to human immunology. He continued his training in immunology as a postdoctoral researcher in John Harty’s lab at the University of Iowa.

Combining parasitology with immunology prepared him to tackle malaria.

Malaria is one of the most studied parasitic diseases, yet the Plasmodium parasite that causes it keeps evading attempts to treat the infection in humans. This is largely due to its complex life cycle and the ability of the parasite to evolve drug resistance. In addition to life stages that occur in the mosquito, which transmits the Plasmodium parasite to humans, there are two life stages in humans—a short phase of initial development in the liver, followed by an infection of the blood cells that causes clinical disease.

“A lot of research has been focused on the blood stage in humans, as this is when a person is symptomatic,” said Kurup, assistant professor of cellular biology in the Franklin College of Arts and Sciences. “But we now recognize that if we want to stop malaria, we need to stop it in its tracks in the liver before accessing the blood, and for that we need to understand the liver stage.”

Kurup, a member of UGA’s Center for Tropical and Emerging Global Diseases, trained in parasitology and immunology. He hopes that uncovering how the human immune system naturally fights malaria in the liver stage will lead to an effective malaria vaccine. (photo credit: Lauren Corcino)

Kurup has been awarded a five-year National Institutes of Health grant to study the natural immune response to the Plasmodium parasite in liver cells.

“The liver stage is short and can be difficult to study in the laboratory,” he said. “There are also practical and ethical limitations to studying the liver stage of malaria in humans. We are hoping to tease apart the basic principles of immune responses during this stage using the mouse model.”

Kurup’s preliminary studies have shown that a group of signaling proteins called type 1 interferons play a role in the destruction of Plasmodium parasites in the liver. His newly funded project will fill a gap in the malaria knowledge base by using a combination of in vitro study and in vivo experiments to determine the molecular processes that eliminate Plasmodium parasites in liver cells. His group recently developed a transgenic parasite line that can be used to genetically alter its host cell.

“This strain is a game changer for our line of research because we can now determine how our liver cells would naturally eliminate the parasite, and maybe why it sometimes fails,” he said.

In a study recently published in Cell Reports, Kurup and colleagues used the genetically altered parasite to inhibit signaling by type 1 interferons and showed that this protein has a direct role in the control of malaria. Their study also revealed that other natural immune mechanisms may be active in controlling malaria in liver cells. The project funded by the new grant will delve further into these mechanisms.

“In addition to taking us a step closer to the control and possible eradication of malaria, this project will expand our knowledge so that we can better reduce the burdens of this illness in our society,” he said.

Kurup is hopeful that uncovering how the human immune system naturally fights malaria in the liver stage will lead to an effective malaria vaccine.

“I really believe that bringing together our knowledge in parasitology and approaches in immunology is key to uncovering new information on this elusive life stage in malaria,” he said. “There is no better place to do this, considering the intellectual and material resources we have at our disposal at UGA and the CTEGD.”

 

This story was first published at https://research.uga.edu/news/uga-researcher-uncovers-humans-natural-weapon-against-malaria/

Streamlining sporozoite isolation from mosquitoes by leveraging the dynamics of migration to the salivary glands

Background: Sporozoites isolated from the salivary glands of Plasmodium-infected mosquitoes are a prerequisite for several basic and pre-clinical applications. Although salivary glands are pooled to maximize sporozoite recovery, insufficient yields pose logistical and analytical hurdles; thus, predicting yields prior to isolation would be valuable. Preceding oocyst densities in the midgut is an obvious candidate. However, it is unclear whether current understanding of its relationship with sporozoite densities can be used to maximize yields, or whether it can capture the potential density-dependence in rates of sporozoite invasion of the salivary glands.

Methods: This study presents a retrospective analysis of Anopheles stephensi mosquitoes infected with two strains of the rodent-specific Plasmodium berghei. Mean oocyst densities were estimated in the midguts earlier in the infection (11-15 days post-blood meal), with sporozoites pooled from the salivary glands later in the infection (17-29 days). Generalized linear mixed effects models were used to determine if (1) mean oocyst densities can predict sporozoite yields from pooled salivary glands, (2) whether these densities can capture differences in rates of sporozoite invasion of salivary glands, and (3), if the interaction between oocyst densities and time could be leveraged to boost overall yields.

Results: The non-linear effect of mean oocyst densities confirmed the role of density-dependent constraints in limiting yields beyond certain oocyst densities. Irrespective of oocyst densities however, the continued invasion of salivary glands by the sporozoites boosted recoveries over time (17-29 days post-blood meal) for either parasite strain.

Conclusions: Sporozoite invasion of the salivary glands over time can be leveraged to maximize yields for P. berghei. In general, however, invasion of the salivary glands over time is a critical fitness determinant for all Plasmodium species (extrinsic incubation period, EIP). Thus, delaying sporozoite collection could, in principle, substantially reduce dissection effort for any parasite within the genus, with the results also alluding to the potential for changes in sporozoites densities over time to modify infectivity for the next host.

Ashutosh K Pathak, Justine C Shiau, Blandine Franke-Fayard, Lisa M Shollenberger, Donald A Harn, Dennis E Kyle, Courtney C Murdock. Malar J. 2022 Sep 13;21(1):264. doi: 10.1186/s12936-022-04270-y.

Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets

The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite’s influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.

Anthony A Ruberto, Steven P Maher, Amélie Vantaux, Chester J Joyner, Caitlin Bourke, Balu Balan, Aaron Jex, Ivo Mueller, Benoit Witkowski, Dennis E Kyle. Front Cell Infect Microbiol. 2022 Aug 25;12:986314. doi: 10.3389/fcimb.2022.986314. eCollection 2022.

Direct type I interferon signaling in hepatocytes controls malaria

Malaria is a devastating disease impacting over half of the world’s population. Plasmodium parasites that cause malaria undergo obligatory development and replication in hepatocytes before infecting red blood cells and initiating clinical disease. While type I interferons (IFNs) are known to facilitate innate immune control to Plasmodium in the liver, how they do so has remained unresolved, precluding the manipulation of such responses to combat malaria. Utilizing transcriptomics, infection studies, and a transgenic Plasmodium strain that exports and traffics Cre recombinase, we show that direct type I IFN signaling in Plasmodium-infected hepatocytes is necessary to control malaria. We also show that the majority of infected hepatocytes naturally eliminate Plasmodium infection, revealing the potential existence of anti-malarial cell-autonomous immune responses in such hepatocytes. These discoveries challenge the existing paradigms in Plasmodium immunobiology and are expected to inspire anti-malarial drugs and vaccine strategies.

Camila Marques-da-Silva, Kristen Peissig, Michael P Walker, Justine Shiau, Carson Bowers, Dennis E Kyle, Rahul Vijay, Scott E Lindner, Samarchith P Kurup. Cell Rep. 2022 Jul 19;40(3):111098. doi: 10.1016/j.celrep.2022.111098.

Fagbami named 2022 Burroughs Wellcome Fund PDEP Fellow

UGA’s Lọla Fagbami, winner of a Burroughs Wellcome Fund 2022 Postdoctoral Diversity Enrichment Program fellowship, is a native of Lagos, Nigeria, who relocated to the United States with her family in the late 1990s. She is passionate about expanding scientific literacy through outreach and mentoring as well as refuting chemophobia—the fear of or aversion to chemicals and chemistry. (Photo by Lauren Corcino)

Lọla Fagbami, a postdoctoral research associate at UGA, has been awarded a Burroughs Wellcome Fund 2022 Postdoctoral Diversity Enrichment Program fellowship.

Fagbami, UGA’s first PDEP Fellow, conducts research on the human malaria parasite Plasmodium falciparum at the Center for Tropical and Emerging Global Diseases. She works with Vasant Muralidharan, associate professor of cellular biology in the Franklin College of Arts and Sciences, who nominated her for the award.

“Dr. Fagbami has excellent training in metabolomics, mass spectrometry and Plasmodium drug discovery. Her exceptional work as a graduate student has shown how human malaria-causing parasites use metabolic adaptation to induce antimalarial drug resistance. Dr. Fagbami is a fearless, highly intelligent, accomplished and outstanding scientist who will be a leader in our field,” Muralidharan wrote in his nomination letter.

“Her research project addresses a major gap in the field that has enormous implications for malaria elimination and eradication efforts,” he added.

The PDEP award provides $60,000 over three years to support career-development activities for historically excluded minority postdoctoral fellows pursuing academic careers in biomedical or medical research, according to the Burroughs Wellcome Fund.

“This award is an investment in me as a scientist and leader and will help advance my career to the next level,” Fagbami said. “I am excited to join the extraordinary community of PDEP scholars and also connect with program alumni who have successfully made the transition to research independence.”

Fagbami earned a B.S. in chemistry at Emory University, an M.B.S. and an M.P.H. in health policy at Rutgers University, and a Ph.D. in chemical biology at Harvard University.