Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: malaria

Chet Joyner receives $1.1 million grant to study malaria vaccine

RESEARCH WILL BE IN COLLABORATION WITH YALE UNIVERSITY

Chet Joyner, PhD, a faculty member in the Center for Vaccines and Immunology and the Center for Tropical and Emerging Diseases in the College of Veterinary Medicine (CVM) at the University of Georgia, is the recipient of a $1.1 million grant from Open Philanthropy to perform preclinical testing of a vaccine designed to prevent reinfection from malaria.

“A vaccine that lessens the impact of this disease will have incalculable value in terms of lives saved and the quality of life of those in the affected areas,” said Lisa K. Nolan, DVM, PhD, dean of the CVM. “We are proud of Dr. Joyner’s work and that he has chosen to do it in the College of Veterinary Medicine at the University of Georgia.”

Joyner is collaborating with Dr. Richard Bucala, MD, PhD, of Yale University to test the vaccine that targets Plasmodium-encoded Macrophage Migration Inhibitory Factor (pMIF), a protein secreted by Plasmodium falciparum, a pathogen that causes malaria.

The science team for Open Philanthropy, which recommended grants to Joyner and Bucala for the three-year study, believes that vaccinating against pMIF may provide an important boost to the efficacy of existing malaria vaccines, according to a statement on its website, openphilanthropy.org.

Open Philanthropy is a Silicon Valley-based nonprofit which aims to use its resources to help others as much as possible. They fund work in many areas, including global health.

Joyner, who was recruited from Emory University to join the CVM in January of 2020, said the college is uniquely positioned to test the efficacy of the vaccine developed by Bucala at Yale.

“We are a strong malaria group with unique infrastructure and facilities that can support this necessary research within the CVM,” Joyner said.

Immunity to malaria is acquired naturally after exposure, but the disease can be fatal to children younger than five and debilitating up to age 10 because malaria parasites disrupt the immune system’s response with their own proteins that mimic the human Macrophage Migration Inhibitory Factor (MIF).

Not only does the resulting illness cause children to miss school, but it also leads to long-term cognitive decline due to nutritional deficiencies. Parents miss work to care for children and the economic impacts compound.

According to the World Health Organization’s 2022 World Malaria report, an estimated 247 million cases of malaria occurred worldwide in 2021 and 619,000 people died, mostly children under the age of five in sub-Saharan Africa.

This story was originally published at https://vet.uga.edu/cvm-researcher-wins-1-1-million-grant-to-study-malaria-vaccine/

Malaria disrupts the rhesus macaque gut microbiome

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal’s gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal’s mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.

Danielle N Farinella, Sukhpreet Kaur, ViLinh Tran, Monica Cabrera-Mora, Chester J Joyner, Stacey A Lapp, Suman B Pakala, Mustafa V Nural, Jeremy D DeBarry, Jessica C Kissinger, Dean P Jones, Alberto Moreno, Mary R Galinski, Regina Joice Cordy. Front Cell Infect Microbiol. 2023 Jan 13;12:1058926. doi: 10.3389/fcimb.2022.1058926. eCollection 2022.

AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.

Camila Marques-da-Silva, Barun Poudel, Rodrigo P Baptista, Kristen Peissig, Lisa S Hancox, Justine C Shiau, Lecia L Pewe, Melanie J Shears, Thirumala-Devi Kanneganti, Photini Sinnis, Dennis E Kyle, Prajwal Gurung, John T Harty, Samarchith P Kurup. Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2210181120. doi: 10.1073/pnas.2210181120.

Cryopreservation of Plasmodium Sporozoites

Cryopreservation protocol for Plasmodium sporozoites.

Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.

Carson Bowers, Lisa Hancox, Kristen Peissig, Justine C. Shiau, Amélie Vantaux, Benoit Witkowski, Sivchheng Phal, Steven P. Maher, John T. Harty, Dennis E. Kyle, and Samarchith P. Kurup. Pathogens 2022, 11(12), 1487; https://doi.org/10.3390/pathogens11121487

Integrative genetic manipulation of Plasmodium cynomolgi reveals MultiDrug Resistance-1 Y976F associated with increased in vitro susceptibility to mefloquine

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized P. cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using CRISPR-Cas9 increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.

Kurt E Ward, Peter Christensen, Annie Racklyeft, Satish K Dhingra, Adeline C Y Chua, Caroline Remmert, Rossarin Suwanarusk, Jessica Matheson, Michael J Blackman, Osamu Kaneko, Dennis E Kyle, Marcus C S Lee, Robert W Moon, Georges Snounou, Laurent Rénia, David A Fidock, Bruce Russell, Pablo Bifani. J Infect Dis. 2022 Dec 7;jiac469. doi: 10.1093/infdis/jiac469. Online ahead of print.

Cephalotane-type C20 diterpenoids from Cephalotaxus fortunei var. alpina

Seventeen new cephalotane-type diterpenoids, fortalides A-Q (1-17), along with five known analogues, were isolated from the seeds of Cephalotaxus fortunei var. alpina. Their structures were determined by extensive spectroscopic methods, as well as electronic circular dichroism (ECD) and X-ray crystallographic data analyses. Some isolates exhibited unusual structural features that were first found in cephalotane-type diterpenoids, such as the occurrence of the 7-oxabicyclo[4.1.1]octane moiety in 14 and 15 and the cis-arrangement of 3-OH and Me-19 in 9. Besides, the antiplasmodial activity of these compounds was evaluated in this study.

Zhan-Peng Ge, Bin Zhou, Flavia M Zimbres, Reagan S Haney, Qun-Fang Liu, Yan Wu, Maria B Cassera, Jin-Xin Zhao, Jian-Min Yue. Org Biomol Chem. 2022 Nov 4. doi: 10.1039/d2ob01748b

Liver-stage fate determination in Plasmodium vivax parasites: Characterization of schizont growth and hypnozoite fating from patient isolates

Plasmodium vivax, one species of parasite causing human malaria, forms a dormant liver stage, termed the hypnozoite, which activate weeks, months or years after the primary infection, causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are only killed with drugs of the 8-aminoquinoline class, which are contraindicated in many vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in part, by the lack of robust methods to continuously culture and characterize this parasite. As a result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite formation, persistence, and activation are largely unknown. While previous reports have described vastly different liver-stage growth metrics attributable to which hepatocyte donor lot is used to initiate culture, a comprehensive assessment of how different P. vivax patient isolates behave in the same lots at the same time is logistically challenging. Using our primary human hepatocyte-based P. vivax liver-stage culture platform, we aimed to simultaneously test the effects of how hepatocyte donor lot and P. vivax patient isolate influence the fate of sporozoites and growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor lot can modulate hypnozoite formation rate, the P. vivax case is also an important determinant of the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be mostly influenced by hepatocyte donor lot. These results suggest that, while host hepatocytes harbor characteristics making them more- or less-supportive of a quiescent versus growing intracellular parasite, sporozoite fating toward hypnozoites is isolate-specific. Future studies involving these host-parasite interactions, including characterization of individual P. vivax strains, should consider the impact of culture conditions on hypnozoite formation, in order to better understand this important part of the parasite’s lifecycle.

Amélie Vantaux, Julie Péneau, Caitlin A Cooper, Dennis E Kyle, Benoit Witkowski, Steven P Maher. Front Microbiol. 2022 Sep 23;13:976606. doi: 10.3389/fmicb.2022.976606.

UGA researcher uncovers humans’ natural weapon against malaria

UGA’s Samarchith “Sam” Kurup, assistant professor of cellular biology, has been awarded a five-year National Institutes of Health grant to study the natural immune response to the Plasmodium parasite—which causes malaria—in liver cells. (photo credit: Lauren Corcino)

Samarchith “Sam” Kurup grew up in India, and he’s always been aware of the impact of malaria.

In 2020 there were an estimated 241 million cases of malaria worldwide and an estimated 627,000 deaths, according to a recently released World Health Organization Fact Sheet. Eighty percent of the malaria-related deaths in Africa are children under the age of 5. The relapsing nature of the disease leads to educational and employment loss that has long-term economic impacts for both the individual as well as society.

“Malaria is huge global problem,” said Kurup, a member of UGA’s Center for Tropical and Emerging Global Diseases. “Almost half of the world’s population is currently at risk of contracting malaria.”

Kurup began his training in veterinary medicine in India, where he became hooked on parasitology, then continued his studies at UGA. While pursuing his Ph.D. he worked in Rick Tarleton’s lab, studying a parasitic disease that affects both animals and humans—his first introduction to human immunology. He continued his training in immunology as a postdoctoral researcher in John Harty’s lab at the University of Iowa.

Combining parasitology with immunology prepared him to tackle malaria.

Malaria is one of the most studied parasitic diseases, yet the Plasmodium parasite that causes it keeps evading attempts to treat the infection in humans. This is largely due to its complex life cycle and the ability of the parasite to evolve drug resistance. In addition to life stages that occur in the mosquito, which transmits the Plasmodium parasite to humans, there are two life stages in humans—a short phase of initial development in the liver, followed by an infection of the blood cells that causes clinical disease.

“A lot of research has been focused on the blood stage in humans, as this is when a person is symptomatic,” said Kurup, assistant professor of cellular biology in the Franklin College of Arts and Sciences. “But we now recognize that if we want to stop malaria, we need to stop it in its tracks in the liver before accessing the blood, and for that we need to understand the liver stage.”

Kurup, a member of UGA’s Center for Tropical and Emerging Global Diseases, trained in parasitology and immunology. He hopes that uncovering how the human immune system naturally fights malaria in the liver stage will lead to an effective malaria vaccine. (photo credit: Lauren Corcino)

Kurup has been awarded a five-year National Institutes of Health grant to study the natural immune response to the Plasmodium parasite in liver cells.

“The liver stage is short and can be difficult to study in the laboratory,” he said. “There are also practical and ethical limitations to studying the liver stage of malaria in humans. We are hoping to tease apart the basic principles of immune responses during this stage using the mouse model.”

Kurup’s preliminary studies have shown that a group of signaling proteins called type 1 interferons play a role in the destruction of Plasmodium parasites in the liver. His newly funded project will fill a gap in the malaria knowledge base by using a combination of in vitro study and in vivo experiments to determine the molecular processes that eliminate Plasmodium parasites in liver cells. His group recently developed a transgenic parasite line that can be used to genetically alter its host cell.

“This strain is a game changer for our line of research because we can now determine how our liver cells would naturally eliminate the parasite, and maybe why it sometimes fails,” he said.

In a study recently published in Cell Reports, Kurup and colleagues used the genetically altered parasite to inhibit signaling by type 1 interferons and showed that this protein has a direct role in the control of malaria. Their study also revealed that other natural immune mechanisms may be active in controlling malaria in liver cells. The project funded by the new grant will delve further into these mechanisms.

“In addition to taking us a step closer to the control and possible eradication of malaria, this project will expand our knowledge so that we can better reduce the burdens of this illness in our society,” he said.

Kurup is hopeful that uncovering how the human immune system naturally fights malaria in the liver stage will lead to an effective malaria vaccine.

“I really believe that bringing together our knowledge in parasitology and approaches in immunology is key to uncovering new information on this elusive life stage in malaria,” he said. “There is no better place to do this, considering the intellectual and material resources we have at our disposal at UGA and the CTEGD.”

 

This story was first published at https://research.uga.edu/news/uga-researcher-uncovers-humans-natural-weapon-against-malaria/

Streamlining sporozoite isolation from mosquitoes by leveraging the dynamics of migration to the salivary glands

Background: Sporozoites isolated from the salivary glands of Plasmodium-infected mosquitoes are a prerequisite for several basic and pre-clinical applications. Although salivary glands are pooled to maximize sporozoite recovery, insufficient yields pose logistical and analytical hurdles; thus, predicting yields prior to isolation would be valuable. Preceding oocyst densities in the midgut is an obvious candidate. However, it is unclear whether current understanding of its relationship with sporozoite densities can be used to maximize yields, or whether it can capture the potential density-dependence in rates of sporozoite invasion of the salivary glands.

Methods: This study presents a retrospective analysis of Anopheles stephensi mosquitoes infected with two strains of the rodent-specific Plasmodium berghei. Mean oocyst densities were estimated in the midguts earlier in the infection (11-15 days post-blood meal), with sporozoites pooled from the salivary glands later in the infection (17-29 days). Generalized linear mixed effects models were used to determine if (1) mean oocyst densities can predict sporozoite yields from pooled salivary glands, (2) whether these densities can capture differences in rates of sporozoite invasion of salivary glands, and (3), if the interaction between oocyst densities and time could be leveraged to boost overall yields.

Results: The non-linear effect of mean oocyst densities confirmed the role of density-dependent constraints in limiting yields beyond certain oocyst densities. Irrespective of oocyst densities however, the continued invasion of salivary glands by the sporozoites boosted recoveries over time (17-29 days post-blood meal) for either parasite strain.

Conclusions: Sporozoite invasion of the salivary glands over time can be leveraged to maximize yields for P. berghei. In general, however, invasion of the salivary glands over time is a critical fitness determinant for all Plasmodium species (extrinsic incubation period, EIP). Thus, delaying sporozoite collection could, in principle, substantially reduce dissection effort for any parasite within the genus, with the results also alluding to the potential for changes in sporozoites densities over time to modify infectivity for the next host.

Ashutosh K Pathak, Justine C Shiau, Blandine Franke-Fayard, Lisa M Shollenberger, Donald A Harn, Dennis E Kyle, Courtney C Murdock. Malar J. 2022 Sep 13;21(1):264. doi: 10.1186/s12936-022-04270-y.

Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets

The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite’s influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.

Anthony A Ruberto, Steven P Maher, Amélie Vantaux, Chester J Joyner, Caitlin Bourke, Balu Balan, Aaron Jex, Ivo Mueller, Benoit Witkowski, Dennis E Kyle. Front Cell Infect Microbiol. 2022 Aug 25;12:986314. doi: 10.3389/fcimb.2022.986314. eCollection 2022.