Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Jessica Kissinger

Genetic crosses within and between species of Cryptosporidium

Figure 1 PheRS can be used as a selection marker for stable transgenesis.
PheRS can be used as a selection marker for stable transgenesis.

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.

Sebastian Shaw, Ian S Cohn, Rodrigo P Baptista, Guoqin Xia, Bruno Melillo, Fiifi Agyabeng-Dadzie, Jessica C Kissinger, Boris Striepen. Proc Natl Acad Sci USA. 2024 Jan 2;121(1):e2313210120. doi: 10.1073/pnas.2313210120.

VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.

Jorge Alvarez-Jarreta, et al. Nucleic Acids Res. 2023 Nov 11:gkad1003. doi: 10.1093/nar/gkad1003

Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma

Figure 1 Characteristics of NUMTs and NUPTs in T. gondii ME49
Fig. 1 Characteristics of NUMTs and NUPTs in T. gondii ME49

 

Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.

Sivaranjani Namasivayam, Cheng Sun, Assiatu B Bah, Jenna Oberstaller, Edwin Pierre-Louis, Ronald Drew Etheridge, Cedric Feschotte, Ellen J Pritham, Jessica C Kissinger. Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2308569120. doi: 10.1073/pnas.2308569120.

All the pieces matter: UGA researchers collaborate to solve malaria puzzle

malaria parasites
Super-resolution microscopy showing malaria parasites infecting human red blood cells. credit: Muthugapatti Kandasamy, Biomedical Microscopy Core

They say what doesn’t kill you makes you stronger. Whoever coined that adage had probably never heard of Plasmodium.

It’s a microscopic parasite, invisible to the naked eye but common in tropical and subtropical regions throughout the world. Each year, millions of people are infected by Plasmodium and exposed to an even more debilitating—and often deadly—disease: malaria.

Malaria is one of the deadliest diseases known to man. It can lead to extreme illness, marked by fever, chills, headaches and fatigue. More than half the world’s population is at risk of contracting the disease, and those who develop relapsing infections suffer a host of associated costs.

Limited educational opportunities and wage loss lead to an often unbreakable cycle of poverty. Vulnerable populations are most at risk.

“When I’m teaching in an endemic area like Africa, it isn’t unusual to find a student who needs to sleep during part of the workshop because they have malaria,” researcher Jessica Kissinger said.

It’s a challenge she and her collaborators in the University of Georgia’s Center for Tropical and Emerging Global Diseases (CTEGD) are trying to combat.

When the Center was established in 1998, there were only a couple of faculty members studying Plasmodium. Now, 25 years later, it has become a world-class powerhouse of multidisciplinary malaria research. Scientists examine various species of the dangerous parasite, studying its life cycle and the mosquito that transmits it.

While Plasmodium seems to have superpowers that allow it to evade detection and resist treatment, CTEGD researchers are working together to innovate and transfer science from the lab to interventions on the ground.

A 50,000-piece puzzle with no edges

Plasmodium is a complex organism, and studying it is like putting together a jigsaw puzzle. Some researchers contribute pieces related to the blood or liver stages of the parasite’s lifecycle, while others provide insights about hosts interactions. One way UGA’s research connects with the global effort to eradicate malaria is PlasmoDb—a resource derived in part from Kissinger’s research that is now part of a host of databases under the umbrella of The Eukaryotic Pathogen, Vector and Host information Resource (VEuPathDB).

“Our group has been able to help many others when their research question crosses into an –omic,” Kissinger said, referring to in-house shorthand for domains like genomics, proteomics and metabolomics.

Kissinger, Distinguished Research Professor of genetics in the Franklin College of Arts & Sciences, became interested in malaria and Plasmodium during her postdoctoral training at the National Institutes of Health (NIH). Working from an evolutionary biology perspective, she’s interested in how the parasite has changed over time.

PlasmoDb, a database of Plasmodium informatics resources, is a tool developed in part by the work of Distinguished Research Professor Jessica Kissinger, who became interested in malaria during her postdoctoral training at the National Institutes of Health.

“I see it as an arms race,” Kissinger said. “I want to understand what moves they have and can make.”

To understand the parasite, you must dive deep into its genetic code.

Kissinger paired her work in Plasmodium genomics with her interest in computing by helping create the database with information from the Plasmodium genome project completed in 2002. The Malaria Host-Pathogen Interaction Center, one of her projects at UGA, was a seven-year, multi-institutional effort funded, in part, by NIH to create data sets that could be used in systems biology of the host-pathogen interaction during the development of disease.

“Wouldn’t it be neat if, from the beginning of infection all the way to cure, you knew everything that was going on in the organism all the time?” Kissinger said, noting the project’s goal.

They generated terabytes of data that, along with data from the global research community, are publicly accessible and reusable through PlasmoDB and other resources.

Being part of a group that is studying so many different aspects of malaria helps put Kissinger’s research into perspective. Now, in addition to understanding the parasite, she also thinks about tools needed to facilitate research from peers.

High-tech solutions rely on basic research

David Peterson, professor of infectious diseases in the College of Veterinary Medicine, noted that low-tech solutions have mitigated malaria’s human costs. He acknowledged, however, that their long-term goals required more.

“We have to acknowledge that low-tech solutions, such as mosquito nets, have saved lives,” Peterson said. “But to develop the high-tech solutions that will one day end malaria, we need basic research.”

Pregnant women are particularly vulnerable to malaria because their existing immunity to malaria fails to protect them during pregnancy. Placental malaria often results in  premature birth and low birth weight.

Peterson is interested in a binding protein that allows the parasite to adhere to the placenta. While many P. falciparum parasites have only one gene copy that encodes the placental binding protein,  Peterson is investigating Plasmodiumisolates with two or more slightly different copies.

But why isn’t one copy enough?

David Peterson
Professor David Peterson of the College of Veterinary Medicine acknowledges the importance of low-tech solutions like mosquito nets but said to mitigate its effects required better understanding at the genetic level.

That is the primary question Peterson is focused on. He wants to understand how Plasmodium uses extra copies to evade the immune system, distinguishing the role of each requires tools that Vasant Muralidharan, associate professor of cellular biology, has.

Muralidharan’s interest began when he contracted malaria himself. Through access to good health care, he made a full recovery, but the pain he endured remained. He wanted to understand this parasite. Even more, he wanted to make an impact with research.

His graduate training focused on biophysics, but soon his interest in Plasmodium resurfaced. He discovered there was a lack of tools to study the parasite on a genetic level.

“It’s like a house of cards, and each card is a gene,” Muralidharan said. “You can remove one and see what happens—does the house fall or remain standing?”

This is an illustration of the life cycle of the parasites of the genus, Plasmodium, that are causal agents of malaria.(Illustration by CDC/ Alexander J. da Silva, PhD; Melanie Moser)

In the days before CRISPR/Cas9, there wasn’t a precise way to remove genes. Muralidharan is among the pioneers of gene-editing techniques in Plasmodium.

Like Peterson, Muralidharan focuses on proteins secreted by the parasite. He studies the largely unknown process that allows the parasite to invade a red blood cell (RBC), replicate and escape. The lack of tools was a major hindrance, so Muralidharan created new ones.

These tools have been used by Muralidharan’s CTEGD and CDC colleagues to see how drugs might fail. Muralidharan’s laboratory can create mutant Plasmodium parasites that become resistant to a particular drug, and genome sequence databases allow researchers to check if that mutant is already circulating in malaria endemic regions.

Vasant Quote

Building a research bridge to endemic regions

Plasmodium vivax is the predominant malaria parasite in Southeast Asia. It causes “relapsing malaria” during which some parasites go “dormant” after entering the liver instead of reproducing. This phase is a major obstacle for current treatments.

CTEGD Director Dennis Kyle, GRA Eminent Scholar Chair in Antiparasitic Drug Discovery and head of the Department of Cellular Biology, became fascinated with the Plasmodium parasite early in his career, spending time living in Thailand and working in refugee camps where malaria is prevalent.

Dennis Kyle
CTEGD Director Dennis Kyle was moved to follow through with his work as a researcher on a trip to a refugee camp in Thailand. Upon seeing the challenges residents faced, he thought perhaps he should have become a physician. Instead, a local leader impressed upon him the impact you could have in generating new treatments that could benefit everyone. (Photo by Andrew Davis Tucker/UGA)

“When I first got to the refugee camp and saw the situation people were living in, I questioned my decision to become a scientist in the lab instead of becoming a physician,” Kyle said, recalling a camp he worked in that housed about 1,300 kids between the ages of 2 and 15. “There was a guy who was a leader in the group who probably had no more than an early high school education. He said, ‘Look at what you can do—you might generate something that would benefit all of us. The physicians we have in the camp can only work on a few people at a time.’”

Kyle’s laboratory is looking to repurpose medications that have antimalarial properties, a safe way to reduce the development time from lab to clinical use. He’s optimistic we will see a drug treatment that eliminates vivax malaria.

“That’s where UGA is playing a major role,” he said. “The Gates Foundation funded us to develop tools to study the dormant parasite in the liver. And we’ve been successful.”

One of Kyle’s collaborators is Samarchith Kurup, assistant professor of cellular biology, who studies the human immune response to Plasmodium infection.

“We use mouse models to delve into the fundamental host-parasite interactions, which you cannot do practicallyin humans,” Kurup said. “Our understanding of these fundamental processes gives rise to newer and better vaccination approaches and drugs.”

Another important CTEGD addition is Chet Joyner, assistant professor of infectious diseases, whose work has helped make it easier to study dormant parasites stateside.

Like other Plasmodium researchers, Joyner became interested in parasites at an early age. During an undergraduate parasitology class, he discovered how little was known about P. vivax. He was already interested in how diseases develop, so for graduate school he focused on the liver stage of vivax malaria. However, it was a difficult task.

Samarchith Kurup is an assistant professor of cellular biology studying the human immune response to Plasmodium infection. (photo credit: Lauren Corcino)
Samarchith Kurup is an assistant professor of cellular biology studying the human immune response to Plasmodium infection. (photo credit: Lauren Corcino)
Chet Joyner
Assistant Professor Chet Joyner discovered how little was known about Plasmodium vivax as an undergraduate student.

“At the time, the technologies weren’t there,” Joyner said. “Dennis was working on his system, but it wasn’t on the scene yet. I changed from studying the parasite to studying the animal model to understand pathogenesis and immunology in humans.”

Joyner joined UGA after completing his postdoctoral training at Emory University, where he developed a non-mouse animal model to study vivax malaria.

“We have to go to [Thailand] where people are infected and collect blood samples and then feed mosquitoes these samples to do the necessary studies,” Kyle said. “That’s been very impactful. We’ve gotten a lot of data out of it, and now with Chet’s model it all can be done under one roof.”

Joyner wants to understand the human immune response with a focus on vaccine development. Building on Muralidharan’s and other researchers’ findings of how the parasite interacts with the RBCs, Joyner’s vaccine program targets a specific protein in the parasite that inhibits the development of immunity.

“My colleagues have shown that if you knock this protein out in the parasite, the immune response in mice is actually great, and we are now working together to evaluate this in non-mouse models.” Joyner said.

Joyner also has collaborated with Belen Cassera, professor of biochemistry, to screen drug compounds. Cassera’s training focused on metabolism to find drug targets. She is particularly interested in how a drug functions.

“If we understand how the drug works, it will help us predict potential side effects in humans,” Cassera said. “We can’t predict everything, but knowing how it works gives you some confidence in whether it will work in humans.”

Cassera is focused on finding drugs that will treat the more lethal Plasmodium falciparum, the predominant species in Africa, which is rapidly becoming resistant to current treatments. Her work is complementary to Kyle’s.

“They run certain assays for the liver-stage infection, and our lab benefits because we want to know if the drug we are developing is specific for the blood stage or can tackle all stages,” Cassera said.

M. Belen Cassera
Professor Belen Cassera is identifying drugs that will treat the lethal Plasmodium falciparum, a predominant species of the parasite in Africa that has become resistant to many current treatments.

Don’t forget the mosquito

“Malaria is a vector-borne disease transmitted by a mosquito. You need to tackle not only the parasite in the human but also stop its transmission,” Cassera said. “CTEGD is unique because we can study the whole life cycle, including the mosquito.”

Michael Strand, H.M. Pulliam Chair of Entomology in the College of Agricultural and Environmental Sciences and a National Academy of Sciences Fellow, is an expert on parasite-host interactions. Instead of the human host, he is interested in mosquitoes. Recent work indicates blood feeding behavior of mosquitoes strongly affects malaria parasite development while the gut microbiota of mosquitos could lead to new ways to control populations. Having the SporoCore insectory on campus aids his research.

Michael Strand is an expert on parasite-host interactions. His research focuses on mosquitoes and their effects on malaria parasite development.
Michael Strand is an expert on parasite-host interactions. His research focuses on mosquitoes and their effects on malaria parasite development.

Established in 2020, SporoCore, under the management of Ash Pathak, assistant research scientist in the Department of Infectious Diseases, provides both uninfected and Plasmodium-infected Anopheles stephensi mosquitoes to researchers at UGA and other institutions. Like Joyner’s animal model, the insectory allows for research to be done in the U.S. that would otherwise require field work in an endemic country.

Old-school interventions like mosquito nets, combined with new drug therapies, have reduced the number of malaria deaths, which declined over the last 30 years before rising slightly during the COVID-19 pandemic. Great strides have been made to control and treat malaria—but not enough. New tools, like the ones being developed at CTEGD, are needed to keep pushing malaria’s morbidity and mortality rates in the right direction.

“The hard part—what can’t be done easily with the tools we already have—is being done,” Kyle said. “We just need new tools, which is one of the things that our center is really a leader in.”

 

This story was first published at https://research.uga.edu/news/all-the-pieces-matter-uga-researchers-collaborate-to-solve-malaria-puzzle/

TriTrypDB: An integrated functional genomics resource for kinetoplastida

Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as ‘community annotations’ immediately and, pending curatorial review, will be integrated into the official genome annotation.

Achchuthan Shanmugasundram, David Starns, Ulrike Böhme, Beatrice Amos, Paul A Wilkinson, Omar S Harb, Susanne Warrenfeltz, Jessica C Kissinger, Mary Ann McDowell, David S Roos, Kathryn Crouch, Andrew R Jones. PLoS Negl Trop Dis. 2023 Jan 19;17(1):e0011058. doi: 10.1371/journal.pntd.0011058.

Malaria disrupts the rhesus macaque gut microbiome

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal’s gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal’s mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.

Danielle N Farinella, Sukhpreet Kaur, ViLinh Tran, Monica Cabrera-Mora, Chester J Joyner, Stacey A Lapp, Suman B Pakala, Mustafa V Nural, Jeremy D DeBarry, Jessica C Kissinger, Dean P Jones, Alberto Moreno, Mary R Galinski, Regina Joice Cordy. Front Cell Infect Microbiol. 2023 Jan 13;12:1058926. doi: 10.3389/fcimb.2022.1058926. eCollection 2022.

Jessica Kissinger is special guest on podcast

Jessica Kissinger was recently the guest researcher on the podcast Talking Biotech with Dr. Kevin Folta.

Show notes:

Parasites are known contributors to human disease and suffering, spanning a wide range of organisms. Dr. Jessie Kissinger from the University of Georgia has spent the last two decades curating genomic data from hundreds of parasites, their vectors and hosts. The information helps researchers generate hypotheses about parasites, and presents fertile resources for comparing genomes and understanding similarities and differences across this diverse set of organisms.

Listen to the podcast: https://share.transistor.fm/s/768d4a83

MaHPIC malaria systems biology data from Plasmodium cynomolgi sporozoite longitudinal infections in macaques

Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.

Jeremy D DeBarry, Mustafa V Nural, Suman B Pakala, Vishal Nayak, Susanne Warrenfeltz, Jay Humphrey, Stacey A Lapp, Monica Cabrera-Mora, Cristiana F A Brito, Jianlin Jiang, Celia L Saney, Allison Hankus, Hannah M Stealey, Megan B DeBarry, Nicolas Lackman, Noah Legall, Kevin Lee, Yan Tang, Anuj Gupta, Elizabeth D Trippe, Robert R Bridger, Daniel Brent Weatherly, Mariko S Peterson, Xuntian Jiang, ViLinh Tran, Karan Uppal, Luis L Fonseca, Chester J Joyner, Ebru Karpuzoglu, Regina J Cordy, Esmeralda V S Meyer, Lance L Wells, Daniel S Ory, F Eun-Hyung Lee, Rabindra Tirouvanziam, Juan B Gutiérrez 1, Chris Ibegbu, Tracey J Lamb, Jan Pohl, Sarah T Pruett, Dean P Jones, Mark P Styczynski, Eberhard O Voit, Alberto Moreno, Mary R Galinski, Jessica C Kissinger. Sci Data. 2022 Nov 24;9(1):722. doi: 10.1038/s41597-022-01755-y.

Plasmodium knowlesi Cytoadhesion Involves SICA Variant Proteins

Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.

Mariko S Peterson, Chester J Joyner, Stacey A Lapp, Jessica A Brady, Jennifer S Wood, Monica Cabrera-Mora, Celia L Saney, Luis L Fonseca, Wayne T Cheng, Jianlin Jiang, Stephanie R Soderberg, Mustafa V Nural, Allison Hankus, Deepa Machiah, Ebru Karpuzoglu, Jeremy D DeBarry, Rabindra Tirouvanziam, Jessica C Kissinger, Alberto Moreno, Sanjeev Gumber, Eberhard O Voit, Juan B Gutierrez, Regina Joice Cordy, Mary R Galinski. Front Cell Infect Microbiol. 2022 Jun 23;12:888496. doi: 10.3389/fcimb.2022.888496. eCollection 2022.

Small and intermediate size structural RNAs in the unicellular parasite Cryptosporidium parvum as revealed by sRNA-seq and comparative genomics

Small and intermediate-size noncoding RNAs (sRNAs and is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Cryptosporidium parvum, an obligate zoonotic protist parasite responsible for the diarrhoeal disease cryptosporidiosis. Using Illumina sequencing of a small RNA library, a systematic identification of novel small and is-ncRNAs was performed in C. parvum excysted sporozoites. A total of 79 novel is-ncRNA candidates, including antisense, intergenic and intronic is-ncRNAs, were identified, including 7 new small nucleolar RNAs (snoRNAs). Expression of select novel is-ncRNAs was confirmed by RT-PCR. Phylogenetic conservation was analysed using covariance models (CMs) in related Cryptosporidium and apicomplexan parasite genome sequences. A potential new type of small ncRNA derived from tRNA fragments was observed. Overall, a deep profiling analysis of novel is-ncRNAs in C. parvum and related species revealed structural features and conservation of these novel is-ncRNAs. Covariance models can be used to detect is-ncRNA genes in other closely related parasites. These findings provide important new sequences for additional functional characterization of novel is-ncRNAs in the protist pathogen C. parvum.

Yiran Li, Rodrigo P Baptista, Xiaohan Mei, Jessica C Kissinger. Microb Genom. 2022 May;8(5). doi: 10.1099/mgen.0.000821