Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Cryptosporidium

UGA researcher receives $1 million for cryptosporidium research

Boris Striepen

Athens, Ga. – Researchers at the University of Georgia have received $1 million from the Wellcome Trust and the Bill & Melinda Gates Foundation to speed the development of new drugs for the treatment of cryptosporidiosis, a major cause of diarrheal disease and mortality in young children around the world.

Cryptosporidiosis is caused by cryptosporidium, a microscopic parasite commonly spread through tainted drinking or recreational water. There is currently no vaccine and only a single drug of modest efficacy available to treat cryptosporidiosis.

“Cryptosporidiosis is a tremendous public health challenge,” said Boris Striepen, Distinguished Research Professor in Cellular Biology in the Franklin College of Arts and Sciences and a member of UGA’s Center for Tropical and Emerging Global Diseases. “We are extremely grateful to the Trust and the Foundation for providing generous support and leadership to drive a global research agenda to face this challenge.”

Cryptosporidium is notoriously difficult to study in the laboratory, and this has stalled the development of better treatments. But earlier this year, Striepen and his research group created new tools to genetically manipulate the parasite, and his team will use funds from the Wellcome Trust and Gates Foundation to leverage this new technology and speed drug discovery.

The Wellcome Trust’s Pathfinder Award of $244,000 will support a collaboration between UGA and the Novartis Institute for Tropical Diseases, a public-private partnership between the pharmaceutical company Novartis and the Singapore Economic Development Board.

The Novartis Institute for Tropical Diseases “has been at the forefront of discovery of new treatments for malaria, tuberculosis and sleeping sickness,” Striepen said. “Engaging a group with this track record to the problem of cryptosporidiosis will be game changing.”

The primary goal of the joint project is to develop better assays to evaluate the effectiveness of drugs in cell cultures and mice. These assays will be used to discover novel candidate drugs using the Novartis Institute for Tropical Diseases’ large collection of candidates.

A $775,000 grant from the Bill & Melinda Gates Foundation will support the development of genetic technology to discover specific drug targets within the parasite, which will ultimately help enhance drug potency and reduce side effects.

Initially, the project will validate targets for drugs for which predictions for likely candidates can be made from prior experience-in particular from the related malaria parasite. In a second phase the project will discover the yet unknown targets of novel drugs.

“The need for effective treatment of cryptosporidiosis is critical, both nationally and internationally. This highly welcome initiative is a major step for those millions of children who globally suffer from this devastating disease,” said Dan Colley, director of CTEGD and former director of the CDC’s Division of Parasitic Diseases.

For more information on the UGA Center for Tropical and Emerging Global Diseases, visit http://ctegd.uga.edu/.

The Wellcome Trust is a global charitable foundation dedicated to improving health. For more information, visit www.wellcome.ac.uk.

Writer: Donna Huber
Contact:Boris Striepen

UGA researchers develop breakthrough tools in fight against cryptosporidium

Boris StriepenAthens, Ga. – Researchers at the University of Georgia have developed new tools to study and genetically manipulate cryptosporidium, a microscopic parasite that causes the diarrheal disease cryptosporidiosis. Their discoveries, published in the journal Nature, will ultimately help researchers in academia and industry find new treatments and vaccines for cryptosporidium, which is a major cause of disease and death in children under 2 years old.

Crypto, as researchers often call it, is most commonly spread through tainted drinking or recreational water. When a person drinks contaminated water, parasites emerge from spores and invade the lining of the small intestine, causing severe diarrhea. In 1993, more than 400,000 people living in the Milwaukee area were infected with crypto when one of the city’s water treatment systems malfunctioned.

The parasite is especially problematic in areas with limited resources, and recent global studies have shown crypto to be one of the most important causes of life-threatening diarrhea in infants and toddlers. There is currently no vaccine and only one drug—nitazoxanide—approved by the U.S. Food and Drug Administration for cryptosporidiosis, but it provides no benefit for those in gravest danger: malnourished children and immunocompromised patients.

“One of the biggest obstacles with crypto is that it is very difficult to study in the lab, and that has made scientists and funders shy away from studying the parasite,” said Boris Striepen, co-author of the paper and Distinguished Research Professor of Cellular Biology in UGA’s Franklin College of Arts and Sciences. “We think that the techniques reported in this paper will open the doors for discovery in crypto research, and that will, in turn, lead to new and urgently needed therapeutics.”

One of their techniques involves manipulating crypto so that it emits light, making it much easier to detect and follow the parasite. Previously, researchers would have to examine samples under a microscope and count crypto spores one by one, which is both time-consuming and inaccurate.

Now, by simply measuring light, researchers may test thousands of drug candidates simultaneously to see if they have the ability to inhibit crypto growth.

“There are enormous libraries of chemicals available now, and some of these chemicals may work as a treatment for crypto, and this technology will help us find them much more rapidly,” said Striepen, who is also a member of UGA’s Center for Tropical and Emerging Global Diseases.

The team also developed a way to genetically modify the parasite using a technique called CRISPR/Cas9, which allows scientists to make very precise changes to an organism’s genome and observe the effects. By knocking out specific crypto genes, researchers can test their importance for the parasite and make predictions on their potential value as a drug target.

Epidemiological studies have demonstrated that children develop immunity to crypto as they get older, but the mechanisms that provide that immunity are poorly understood. The genetic techniques developed in Striepen’s lab will help identify the foundation of natural immunity, opening the possibility for vaccine development. They may also help to develop weakened parasite strains that can no longer cause disease but still induce lasting immunity.

“Drug treatments are important, but finding a way to prevent the disease in the first place would be the most effective way to deal with an early childhood disease,” said Sumiti Vinayak, lead author of the paper and assistant research scientist in Striepen’s lab.

The team also developed new methods to study the disease in mice. Mouse tests are an important precursor to human drug and vaccine trials, and the ability to study crypto in a living organism will speed discovery and therapeutic development.

“Now that we have overcome these initial hurdles, we have a great opportunity to move forward much faster,” Striepen said. “There is need, there is opportunity and now there is technical ability, so I think we may have reached a turning point in the fight against this important disease.”

Additional authors of the study were Mattie Pawlowic, Adam Sateriale, Carrie Brooks, Caleb Studstill, Yael Bar-Peled and Michael Cipriano, all from UGA. This study was supported financially by the National Institutes of Health under grant numbers R01AI112427 and T32AI060546, the Center for Disease Control and Prevention, the UGA Research Foundation and the Georgia Research Alliance.

The study on “Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum” is available online at www.nature.com/nature/journal/vaop/ncurrent/full/nature14651.html.

Writer: James Hataway
Contact:Boris Striepen