Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Genetic Indicators for Calcium Signaling Studies in Toxoplasma gondii

Fluctuations of the cytosolic calcium ion (Ca2+) concentration regulate a variety of cellular functions in all eukaryotes. Cells express a sophisticated set of mechanisms to balance the cytosolic Ca2+ levels and the signals that elevate Ca2+ in the cytosol are compensated by mechanisms that reduce it. Alterations in Ca2+-dependent homeostatic mechanisms are the cause of many prominent diseases in humans, such as heart failure or neuronal death.

The genetic tractability of Toxoplasma gondii and the availability of genetic tools enabled the use of Genetically Encoded Calcium Indicators (GECIs) expressed in the cytoplasm, which started a new era in the studies of Toxoplasma calcium signaling. It was finally possible to see Ca2+ oscillations prior to exit of the parasite from host cells. Years after Endo et al showed that ionophores triggered egress, the assumption that oscillations occur prior to egress from host cells has been validated by experiments using GECIs. GECIs allowed the visualization of specific Ca2+ signals in live intracellular parasites and to distinguish these signals from host cell calcium fluctuations. In this chapter we present an overview describing “tried and true” methods of our lab who pioneered the first use of GECI’s in Toxoplasma, including GECI choice, methodology for transfection and selection of ideal clones, their characterization, and the use of GECI-expressing parasites for fluorometric and microscopic analysis.

Stephen A. Vella, Abigail Calixto, Beejan Asady, Zhu-Hong Li, Silvia N. J. Moreno. Methods Mol Biol. 2020;2071:187-207. doi: 10.1007/978-1-4939-9857-9_11.

The genomes of two parasitic wasps that parasitize the diamondback moth

Background

Parasitic insects are well-known biological control agents for arthropod pests worldwide. They are capable of regulating their host’s physiology, development and behaviour. However, many of the molecular mechanisms involved in host-parasitoid interaction remain unknown.

Results

We sequenced the genomes of two parasitic wasps (Cotesia vestalis, and Diadromus collaris) that parasitize the diamondback moth Plutella xylostella using Illumina and Pacbio sequencing platforms. Genome assembly using SOAPdenovo produced a 178 Mb draft genome for C. vestalis and a 399 Mb draft genome for D. collaris. A total set that contained 11,278 and 15,328 protein-coding genes for C. vestalis and D. collaris, respectively, were predicted using evidence (homology-based and transcriptome-based) and de novo prediction methodology. Phylogenetic analysis showed that the braconid C. vestalis and the ichneumonid D. collaris diverged approximately 124 million years ago. These two wasps exhibit gene gains and losses that in some cases reflect their shared life history as parasitic wasps and in other cases are unique to particular species. Gene families with functions in development, nutrient acquisition from hosts, and metabolism have expanded in each wasp species, while genes required for biosynthesis of some amino acids and steroids have been lost, since these nutrients can be directly obtained from the host. Both wasp species encode a relative higher number of neprilysins (NEPs) thus far reported in arthropod genomes while several genes encoding immune-related proteins and detoxification enzymes were lost in both wasp genomes.

Conclusions

We present the annotated genome sequence of two parasitic wasps C. vestalis and D. collaris, which parasitize a common host, the diamondback moth, P. xylostella. These data will provide a fundamental source for studying the mechanism of host control and will be used in parasitoid comparative genomics to study the origin and diversification of the parasitic lifestyle.

Min Shi, Zhizhi Wang, Xiqian Ye, Hongqing Xie, Fei Li, Xiaoxiao Hu, Zehua Wang, Chuanlin Yin, Yuenan Zhou, Qijuan Gu, Jiani Zou, Leqing Zhan, Yuan Yao, Jian Yang, Shujun Wei, Rongmin Hu, Dianhao Guo, Jiangyan Zhu, Yanping Wang, Jianhua Huang, Francesco Pennacchio, Michael R. Strand & Xuexin Chen. The genomes of two parasitic wasps that parasitize the diamondback moth. BMC Genomics 20893 (2019) doi:10.1186/s12864-019-6266-0.

Chagas Disease Drug Discovery: Multiparametric Lead Optimization against Trypanosoma cruzi in Acylaminobenzothiazole Series

Acylaminobenzothiazole hits were identified as potential inhibitors of Trypanosoma cruzi replication, a parasite responsible for Chagas disease. We selected compound 1 for lead optimization, aiming to improve in parallel its anti-T. cruzi activity (IC50 = 0.63 μM) and its human metabolic stability (human clearance = 9.57 mL/min/g). A total of 39 analogues of 1 were synthesized and tested in vitro. We established a multiparametric structure-activity relationship, allowing optimization of antiparasite activity, physicochemical parameters, and ADME properties. We identified compound 50 as an advanced lead with an improved anti-T. cruzi activity in vitro (IC50 = 0.079 μM) and an enhanced metabolic stability (human clearance = 0.41 mL/min/g) and opportunity for the oral route of administration. After tolerability assessment, 50 demonstrated a promising in vivo efficacy.

Charlotte Fleau, Angel Padilla, Juan Miguel-Siles, Maria T. Quesada-Campos, Isabel Saiz-Nicolas, Ignacio Cotillo, Juan Cantizani Perez, Rick L. Tarleton, Maria Marco, Gilles Courtemanche. J Med Chem. 2019. doi: 10.1021/acs.jmedchem.9b01429.

Field Relevant Variation in Ambient Temperature Modifies Density-Dependent Establishment of Plasmodium falciparum Gametocytes in Mosquitoes

The relationship between Plasmodium falciparum gametocyte density and infections in mosquitoes is central to understanding the rates of transmission with important implications for control. Here, we determined whether field relevant variation in environmental temperature could also modulate this relationship. Anopheles stephensi were challenged with three densities of P. falciparum gametocytes spanning a ~10-fold gradient, and housed under diurnal/daily temperature range (“DTR”) of 9°C (+5°C and -4°C) around means of 20, 24, and 28°C. Vector competence was quantified as the proportion of mosquitoes infected with oocysts in the midguts (oocyst rates) or infectious with sporozoites in the salivary glands (sporozoite rates) at peak periods of infection for each temperature to account for the differences in development rates. In addition, oocyst intensities were also recorded from infected midguts and the overall study replicated across three separate parasite cultures and mosquito cohorts. While vector competence was similar at 20 DTR 9°C and 24 DTR 9°C, oocyst and sporozoite rates were also comparable, with evidence, surprisingly, for higher vector competence in mosquitoes challenged with intermediate gametocyte densities. For the same gametocyte densities however, severe reductions in the sporozoite rates was accompanied by a significant decline in overall vector competence at 28 DTR 9°C, with gametocyte density per se showing a positive and linear effect at this temperature. Unlike vector competence, oocyst intensities decreased with increasing temperatures with a predominantly positive and linear association with gametocyte density, especially at 28 DTR 9°C. Oocyst intensities across individual infected midguts suggested temperature-specific differences in mosquito susceptibility/resistance: at 20 DTR 9°C and 24 DTR 9°C, dispersion (aggregation) increased in a density-dependent manner but not at 28 DTR 9°C where the distributions were consistently random. Limitations notwithstanding, our results suggest that variation in temperature could modify seasonal dynamics of infectious reservoirs with implications for the design and deployment of transmission-blocking vaccines/drugs.

Ashutosh K. Pathak, Justine C. Shiau, Matthew B. Thomas and Courtney C. Murdock, Front Microbiol. 2019 Nov 15;10:2651. doi: 10.3389/fmicb.2019.02651. eCollection 2019.

Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids

Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter and nutritional co-obligate symbiont. Here we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a co-infection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggest that metabolic complementarity is not the basis for co-infection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.

V Patel, G Chevignon, A Manzano-Marín, J W Brandt, M R Strand, J A Russell, K M Oliver. 2019 Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biology and Evolution, evz252, https://doi.org/10.1093/gbe/evz252

Modeling approaches to predicting persistent hotspots in SCORE studies for gaining control of schistosomiasis mansoni in Kenya and Tanzania

BACKGROUND:

Some villages, labeled “persistent hotspots (PHS),” fail to respond adequately in regard to prevalence and intensity of infection to mass drug administration (MDA) for schistosomiasis. Early identification of PHS, for example, before initiating or after a year or two of MDA could help guide programmatic decision-making.

METHODS:

In a study with multiple rounds of MDA, data collected prior to the third MDA were used to predict PHS. We assessed six predictive approaches using data from before MDA and after 2 rounds of annual MDA from Kenya and Tanzania.

RESULTS:

Generalized linear models with variable selection possessed relatively stable performance compared to tree-based methods. Models applied to Kenya data alone or combined data from Kenya and Tanzania could reach over 80% predictive accuracy, while predicting PHS for Tanzania was challenging. Models developed from one country and validated in another failed to achieve satisfactory performance. Several Year 3 variables were identified as key predictors.

CONCLUSIONS:

Statistical models applied to Year 3 data could help predict PHS and guide program decisions, with infection intensity, prevalence of heavy infections (≥400 eggs/gram of feces), and total prevalence being particularly important factors. Additional studies including more variables and locations could help in developing generalizable models.

Ye Shen, Meng-Hsuan Sung, Charles H King, Sue Binder, Nupur Kittur, Christopher C Whalen, Daniel G Colley. J Infect Dis. 2019 Oct 17. pii: jiz529. doi: 10.1093/infdis/jiz529

Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species

Thrips transmit one of the most devastating plant viruses worldwide–tomato spotted wilt tospovirus (TSWV). Tomato spotted wilt tospovirus is a type species in the genus Orthotospovirus and family Tospoviridae. Although there are more than 7,000 thrips species, only nine thrips species are known to transmit TSWV. In this study, we investigated the molecular factors that could affect thrips ability to transmit TSWV. We assembled transcriptomes of a vector, Frankliniella fusca [Hinds], and a non-vector, Frankliniella tritici [Fitch], and performed qualitative comparisons of contigs associated with virus reception, virus infection, and innate immunity. Annotations of Ffusca and Ftritici contigs revealed slight differences across biological process and molecular functional groups. Comparison of virus cell surface receptors revealed that homologs of integrin were present in both species. However, homologs of another receptor, heperan sulfate, were present in Ffusca alone. Contigs associated with virus replication were identified in both species, but a contig involved in inhibition of virus replication (radical s-adenosylmethionine) was only present in the non-vector, Ftritici. Additionally, some differences in immune signaling pathways were identified between vector and non-vector thrips. Detailed investigations are necessary to functionally characterize these differences between vector and non-vector thrips and assess their relevance in orthotospovirus transmission.

Shrestha A, Champagne DE, Culbreath AK, Abney MR, Srinivasan R (2019) Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. PLoS ONE 14(10): e0223438. https://doi.org/10.1371/journal.pone.0223438

Anibamine and Its Analogues: Potent Antiplasmodial Agents from Aniba citrifolia

In our continuing search for novel natural products with antiplasmodial activity, an extract of Aniba citrifolia was found to have good activity, with an IC50 value less than 1.25 μg/mL. After bioassay-directed fractionation, the known indolizinium alkaloid anibamine (1) and the new indolizinium alkaloid anibamine B (2) were isolated as the major bioactive constituents, with antiplasmodial IC50 values of 0.170 and 0.244 μM against the drug-resistant Dd2 strain of Plasmodium falciparum. The new coumarin anibomarin A (3), the new norneolignan anibignan A (5), and six known neolignans (712) were also obtained. The structures of all the isolated compounds were determined based on analyses of 1D and 2D NMR spectroscopic and mass spectrometric data, and the absolute configuration of anibignan A (5) was assigned from its ECD spectrum. Evaluation of a library of 28 anibamine analogues (1340) indicated that quaternary charged analogues had IC50 values as low as 58 nM, while uncharged analogues were inactive or significantly less active. Assessment of the potential effects of anibamine and its analogues on the intraerythrocytic stages and morphological development of P. falciparum revealed substantial activity against ring stages for compounds with two C-10 side chains, while those with only one C-10 side chain exhibited substantial activity against trophozoite stages, suggesting different mechanisms of action.

Yongle Du, Ana Lisa Valenciano, Yumin Dai, Yi Zheng, Feng Zhang, Yan Zhang, Jason Clement, Michael Goetz, David G. I. Kingston, Maria B. Cassera. 2019. J Nat Prod. doi: 10.1021/acs.jnatprod.9b00724.

Sylvatic cycles of arboviruses in non-human primates

Arboviruses infecting people primarily exist in urban transmission cycles involving urban mosquitoes in densely populated tropical regions. For dengue, chikungunya, Zika and yellow fever viruses, sylvatic (forest) transmission cycles also exist in some regions and involve non-human primates and forest-dwelling mosquitoes. Here we review the investigation methods and available data on sylvatic cycles involving non-human primates and dengue, chikungunya, Zika and yellow fever viruses in Africa, dengue viruses in Asia and yellow fever virus in the Americas. We also present current putative data that Mayaro, o’nyong’nyong, Oropouche, Spondweni and Lumbo viruses exist in sylvatic cycles.

Matthew John Valentine, Courtney Cuin Murdock & Patrick John Kelly. 2019. Parasit Vectors.;12(1):463. doi: 10.1186/s13071-019-3732-0

Mapping Schistosoma mansoni endemicity in Rwanda: a critical assessment of geographical disparities arising from circulating cathodic antigen versus Kato-Katz diagnostics

Background

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Intervention relies on identifying high-risk regions, yet rapid Schistosoma diagnostics (Kato-Katz stool assays (KK) and circulating cathodic antigen urine assays (CCA)) yield different prevalence estimates. We mapped Smansoni prevalence and delineated at-risk regions using a survey of schoolchildren in Rwanda, where Schistosoma mansoni is an endemic parasite. We asked if different diagnostics resulted in disparities in projected infection risk.

 

Methods

Infection data was obtained from a 2014 Rwandan school-based survey that used KK and CCA diagnostics. Across 386 schools screened by CCA (N = 19,217). To allow for uncertainty when interpreting ambiguous CCA trace readings, which accounted for 28.8% of total test results, we generated two presence-absence datasets: CCA trace as positive and CCA trace as negative. Samples (N = 9,175) from 185 schools were also screened by KK. We included land surface temperature (LST) and the Normalized Difference Vegetation and Normalized Difference Water Indices (NDVI, NDWI) as predictors in geostatistical regressions.

 

Findings

Across 8,647 children tested by both methods, prevalence was 35.93% for CCA trace as positive, 7.21% for CCA trace as negative and 1.95% for KK. LST was identified as a risk factor using KK, whereas NDVI was a risk factor for CCA models. Models predicted high endemicity in Northern and Western regions of Rwanda, though the CCA trace as positive model identified additional high-risk areas that were overlooked by the other methods. Estimates of current burden for children at highest risk (boys aged 5–9 years) varied by an order of magnitude, with 671,856 boys projected to be infected by CCA trace as positive and only 60,453 projected by CCA trace as negative results.

 

Conclusions

Our findings show that people in Rwanda’s Northern, Western and capital regions are at high risk of Smansoni infection. However, variation in identification of environmental risk factors and delineation of at-risk regions using different diagnostics likely provides confusing messages to disease intervention managers. Further research and statistical analyses, such as latent class analysis, can be used to improve CCA result classification and assess its use in guiding treatment regimes.

 

Clark NJ, Umulisa I, Ruberanziza E, Owada K, Colley DG, Ortu G, et al. (2019) Mapping Schistosoma mansoni endemicity in Rwanda: a critical assessment of geographical disparities arising from circulating cathodic antigen versus Kato-Katz diagnostics. PLoS Negl Trop Dis 13(9): e0007723. https://doi.org/10.1371/journal.pntd.0007723