Registration is now open for the 29th Annual Molecular Parasitology & Vector Biology Symposium hosted by the Center for Tropical and Emerging Global Diseases. It will be held on Wednesday, May 1, 2019, at The Georgia Center on the University of Georgia campus in Athens, GA.
This day-long regional conference on parasites and host/parasite interaction draws more than 200 attendees from many departments at UGA and colleagues from other institutions throughout the United States.
As CTEGD is celebrating its 20th anniversary, 4 outstanding alumni have been invited to give spotlight presentations throughout the day in addition to the oral presentations from graduate students, postdocs, and senior researchers.
Invited Alumni Speakers:
James Morris, mentored by Kojo Mensa-Wilmot, is a professor in the Department of Genetics and Biochemistry at Clemson University.
Matthew Collins, mentored by Rick Tarleton, is an assistant professor in the Division of Infectious Diseases at Emory University School of Medicine
Tiffany Weinkopff, mentored by Patrick Lammie, is an assistant professor in the Department of Microbiology and Immunology at the University of Arkansas’s College of Medicine.
Marc-Jan Gubbels, mentored by Boris Striepen, is a professor in the Department of Biology at Boston College.
Oral and Poster Presentations
Graduate students, postdoctoral fellows, and other researchers are invited to present their research in either an oral or poster presentation. Abstracts for these presentations are due by April 12. During registration, please select Poster or Speak. An email will be sent to you with instructions on submitting your abstract. Please keep the following in mind when preparing your submission:
All abstracts must be submitted online by April 12, 2019, via the link in the email you received after registering.
Abstracts should include Title, Author(s), and Affiliation(s).
Abstracts should be 300 words or less, excluding title, author(s), and affiliation(s).
Notification of submission will be emailed to you.
Note: there has been issues of special characters (i.e. α and γ) not displaying in the submitted abstract. Therefore, please note the use of special characters by spelling out the word next to the symbol, e.g. IFN-γ (gamma) or β (Beta). The correction will be made during the editing process.
Abstracts will be published online by Wednesday, April 24.
Cost & Register
There is no cost to attend the Symposium or the full catered lunch, but registration is required.
Hotel Rooms: For those wishing to stay overnight, reservations can be made at The Georgia Center Hotel. The Holiday Inn is also nearby.
As a continuation of our project aimed at searching for new chemotherapeutic agents against American trypanosomiasis (Chagas disease), new selenocyanate derivatives were designed, synthesized and biologically evaluated against the clinically more relevant dividing form of Trypanosoma cruzi, the etiologic agent of this illness. In addition, in order to establish the role of each part of the selenocyanate moiety, different derivatives, in which the selenium atom or the cyano group were absent, were conceived, synthesized and biologically evaluated. In addition, in order to study the optimal position of the terminal phenoxy group, new regioisomers of WC-9 were synthesized and evaluated against T. cruzi. Finally, the resolution of a racemic mixture of a very potent conformationally rigid analogue of WC-9 was accomplished and further tested as growth inhibitors of T. cruzi proliferation. The results provide further insight into the role of the selenocyanate group in its antiparasitic activity.
Schistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence. Previously, we showed that vaccination of water buffalo with SjC23 or SjCTPI plasmid DNA vaccines, induced 50% efficacy to challenge infection. Here, we evaluated several parameters to determine if we can develop a two dose vaccine that maintains the efficacy of the three dose vaccine. We performed four trials evaluating: (1) lab produced vs. GLP grade vaccines, (2) varying the time between prime and boost, (3) the influence of an IL-12 adjuvant, and (4) a two dose heterologous (DNA-protein) prime-boost. We found the source of the DNA vaccines did not matter, nor did increasing the interval between prime and boost. Elimination of the IL-12 plasmid lowered homologous DNA-DNA vaccine efficacy. A major finding was that the heterologous prime boost improved vaccine efficacy, with the prime-boost regimen incorporating both antigens providing a 55% reduction in adult worms and 53% reduction in liver eggs. Vaccinated buffalo produced vaccine-specific antibody responses. These trials suggest that highly effective vaccination against schistosomes can be achieved using a two dose regimen. No adjuvants were used with the protein boost, and the potential that addition of adjuvant to the protein boost to further increase efficacy should be evaluated. These results suggest that use of these two schistosome vaccines can be part of an integrated control strategy to reduce transmission of schistosomiasis in Asia.
To explore the possibility of constrained peptides to target Plasmodium-infected cells, we designed a J domain mimetic derived from Plasmodium falciparum calcium-dependent protein kinase 1 ( PfCDPK1) as a strategy to disrupt J domain binding and inhibit PfCDPK1 activity. The J domain disruptor (JDD) peptide was conformationally constrained using a hydrocarbon staple and was found to selectively permeate segmented schizonts and colocalize with intracellular merozoites in late-stage parasites. In vitro analyses demonstrated that JDD could effectively inhibit the catalytic activity of recombinant PfCDPK1 in the low micromolar range. Treatment of late-stage parasites with JDD resulted in a significant decrease in parasite viability mediated by a blockage of merozoite invasion, consistent with a primary effect of PfCDPK1 inhibition. To the best of our knowledge, this marks the first use of stapled peptides designed to specifically target a Plasmodium falciparum protein and demonstrates that stapled peptides may serve as useful tools for exploring potential antimalarial agents.
Briana R. Flaherty, Tienhuei G. Ho, Sven H. Schmidt, Friedrich W. Herberg, David S. Peterson, and Eileen J. Kennedy. 2019. ACS Infectious Diseases. DOI: 10.1021/acsinfecdis.8b0034
Athens, Ga. – Labs and research support spaces across campus will be getting an upgrade, thanks to a $1.5 million presidential initiative that seeks to build on the university’s dramatic growth in research activity.
Presidential renovation funds have been distributed to nine schools and colleges and will be used to upgrade labs and replace core equipment that enables faculty members to conduct research and be more competitive in seeking grant funding. Proposals were solicited from deans and chosen based on links to college and university strategic priorities, as well as implications for faculty recruitment efforts and grant funding opportunities.
“To advance the research mission of the university and attract and retain outstanding faculty, we must support state-of-the-art facilities that assist the faculty with their groundbreaking work,” said President Jere W. Morehead. “I am pleased the institution has been able to help several faculty with critical needs, thanks to this initiative.”
In the College of Agricultural and Environmental Sciences, an upgrade to an insectary that will be used to rear mosquitoes will enable Regents’ Professor and National Academy of Sciences member Michael Strand and several of his colleagues in the department of entomology to expand their research on infectious diseases such as malaria and dengue fever. “We’re going to be able to do a whole series of experiments that we currently can’t do,” Strand said, adding that the upgraded facility opens up new opportunities for grants.
Upgrades to the Sensory Evaluation and Product Development Lab in the College of Family and Consumer Sciences will enable assistant professor Ginnefer Cox to develop and evaluate new food product formulations more efficiently while also giving students hands-on experiences and facilitating industry partnerships. “This new space is going to have equipment that helps train students to be the next product developers,” Cox said. “The upgrades also create more opportunities to collaborate in research with food companies, which opens up opportunities for students to interact with them and obtain internships and permanent employment.”
In the department of physics and astronomy, part of the Franklin College of Arts and Sciences, renovation funds will aid in faculty recruitment by modernizing an outdated laboratory. “We’re really excited to have received this funding,” said department head Phillip Stancil. “The space has been unused for the last several years, and with this renovation it’ll be ready for a new experimentalist to move in.”
Other schools and colleges that have received funding through presidential renovation funds are the College of Engineering, College of Environment and Design, Odum School of Ecology, College of Public Health, College of Veterinary Medicine and the Warnell School of Forestry and Natural Resources.
Interim Senior Vice President for Academic Affairs and Provost Libby V. Morris noted that the lab renovation funds come at a time when sponsored research awards have increased by 34 percent over the past five years. It also coincides with recruitment initiatives that will bring up to 25 new faculty members to campus.
“Research activity at the University of Georgia has grown significantly in recent years, with strategic investments in faculty and facilities enabling discoveries that point the way to a healthier and more promising future,” Morris said.
Measurement of malaria specific antibody responses represents a practical and informative method for malaria control programs to assess recent exposure to infection. Technical advances in recombinant antigen production, serological screening platforms, and analytical methods have enabled the identification of several target antigens for laboratory based and point-of-contact tests. Questions remain as to how these serological assays can best be integrated into malaria surveillance activities to inform programmatic decision-making. This report synthesizes discussions from a convening at Institut Pasteur in Paris in June 2017 aimed at defining practical and informative use cases for serology applications and highlights five programmatic uses for serological assays including: documenting the absence of transmission; stratification of transmission; measuring the effect of interventions; informing a decentralized immediate response; and testing and treating P. vivax hypnozoite carriers.
Greenhouse B, Daily J, Guinovart C, Goncalves B, Beeson J, Bell D, Chang MA, Cohen JM, Ding X, Domingo G, Eisele TP, Lammie PJ, Mayor A, Merienne N, Monteiro W, Painter J, Rodriguez I, White M, Drakeley C, Mueller I, Malaria Serology Convening. 2019. Gates Open Res.; doi: 10.12688/gatesopenres.12897.1. eCollection 2019.
Celebrate the 10th anniversary of the Southeast Flow Cytometry Interest Group (SEFCIG) with 4 days of educational training and scientific talks. SEFCIG was founded by Julie Nelson, the director of UGA’s CTEGD Cytometry Shared Resource Laboratory. The 10th Annual Meeting is being hosted on the University of Georgia campus in Athens, GA.
Special discounts are available to the UGA community and those attending SEFCIG, please email Tim Bushnell (timbushnell@expertcytometry.com) for details.
March 7 – TechnoFlow
Location: Paul D. Coverdell Building Room S175
11:00 – 12:00
Forensic Flow – Join us to test your skills at detecting bad flow data Jodi Kroeger, Moffitt Cancer Institute
12:00 – 1:00
Luncheon – Coverdell Rotunda
1:00 – 1:45
Multi-Dimensional Functional Profiling of Human Rhinovirus and Allergen- specific T-Cells By Means Of Spectral Flow Cytometry Liesbeth Paul and Joanne Lannigan, University of Virginia
1:45 – 2:30
Imaging and Spectral Cytometry go Viral! Joanne Lannigan, University of Virginia
2:30 – 3:15
High Dimensional Mass Cytometry Data Analysis Deon Bryant, Emory University
3:15 – 4:00
Next Generation Cell Sorting: New Technologies and Strategies Joe Trotter, Becton Dickinson
6:00 – 9:00
Opening Reception – Pecan Tree Galleria
March 8 – General Session
Location: Masters Hall, Georgia Center for Continuing Education
Flow in the South
9:00 – 9:10
Welcome and Introductions
9:10 – 9:55
Canine Breast Cancer Immunotherapy as a Model of Human Disease Curtis Bird, Auburn University
9:55 – 10:40
Single cell analyses of human B cell responses: Lessons from infectious disease and autoimmunity Jens Wrammert, Emory University
10:40 – 11:25
Using Flow Cytometry to Catch Parasites Sleeping Dennis Kyle, University of Georgia
11:25 – 12:00
Exhibits
Vendor Break Out Session with Box Lunches
12:00 – 2:45
Vendor Talks and Exhibits
Flow in the World
2:45 – 3:30
Extracellular Vesicle-Biome Analysis by Nanoscale High Resolution Flow Cytometry Terry Morgan, Oregon School of Health
3:30 – 4:15
Optimizing and validating FC-based EV measurements John Nolan, Scintillon Institute
4:15 – 5:00
Developing Flow Cytometry Assays to Support Clinical Trials Jake Jacobberger, Case Western
Courtney Murdock, an assistant professor with a joint appointment in the College of Veterinary Medicine, the Odum School of Ecology and CTEGD, studies the transmission of mosquito-borne diseases to inform predictions about disease patterns and interventions to disrupt transmission.
Where did you earn degrees and what are your current responsibilities at UGA?
I earned my Bachelor of Science degree in biology with a minor in Spanish literature at the University of Michigan, where I also earned my Ph.D. in the School of Natural Resources and the Environment. I was a postdoctoral researcher in the departments of biology and entomology at Pennsylvania State University and am currently an assistant professor with a joint appointment in the department of infectious diseases in the UGA College of Veterinary Medicine and the Odum School of Ecology.
When did you come to UGA and what brought you here?
I began my current position at UGA in 2014. I was excited to join the faculty here due to the growing expertise in infectious diseases across campus, having access to excellent colleagues in the College of Veterinary Medicine and the world-renowned Odum School of Ecology, and the plethora of resources available concerning facilities, expertise and support for graduate students.
What are your favorite courses and why?
My favorite courses that I took as an undergraduate and graduate student, and to teach as a professor, are ecology courses. Ecology is a modern science that is the study of the interactions among organisms and the environment. This field of study provides key insights into how the environment shapes interactions among organisms, their abundances, where they live, and our overall impact. Ecological knowledge is crucial for understanding and mitigating some of the biggest problems we will have to contend with in the future—some of which include global climate change, natural catastrophes, food and water scarcity, the evolution of antibiotic resistance, and emerging infectious diseases.
What are some highlights of your career at UGA?
My research on mosquito-borne diseases has been well-supported by agencies such as the National Institutes of Health and National Science Foundation, with total funding exceeding $1.2 million since 2014. These funds have supported laboratory research, as well as fieldwork in the U.S. and the Caribbean. The results of my research have been published in high-quality scientific journals of international standing, and my research findings have been cited nearly 1,000 times.
I also mentor 17 undergraduate students, one D.V.M. student, five Ph.D. students, and two postdoctoral researchers. All of my mentees gain hands-on experience working in an infectious disease system in the lab or field, as well as exposure to a diversity of host-parasite/pathogen systems and projects that are both basic and applied in nature. My students have a strong record of success, with two NSF Graduate Research Fellowships, four travel awards to attend international conferences to present their work, and two awards for presenting research at local venues.
How do you describe the scope and impact of your research or scholarship to people outside of your field?
I am interested in understanding what drives the transmission of mosquito-borne diseases. The mosquito is the deadliest organism on this planet because of the harmful organisms it transmits to humans, wildlife and domestic animals. Many of these diseases cannot be treated with drugs or prevented with vaccines. Thus, only through an understanding of the transmission process will we be able understand when we are at most risk to contract these diseases, predict how current disease distributions might change in the future, and develop interventions that efficiently disrupt transmission.
How does your research or scholarship inspire your teaching, and vice versa?
For me there is quite a bit of cross-talk between my research knowledge and experiences and my teaching. One important goal as an instructor in the sciences is to impart a solid understanding of the scientific process. Many students who take my courses do not necessarily want a career in science. I believe that to be informed citizens, however, they need to be able to think critically about science and its contributions to society. The best way I have found outside of lab sections to impart this knowledge is from drawing on my own research experiences. I also have found that my teaching informs the direction of my research program because it encourages me to think about my research from the perspective of foundational concepts in ecology.
What do you hope students gain from their classroom experience with you?
In general, the learning objectives for my courses include understanding the conceptual foundations of ecology, becoming comfortable understanding and working with scientific data, being familiar with the scientific method, and being able to engage in discussion and make informed decisions about ecological and environmental issues.
On the less concrete side, I want them to wonder at how amazing the natural world is, be curious about it, understand our part and overall impact, and to be more informed, science-literate citizens.
Describe your ideal student.
Here are some characteristics I value in both undergraduate and graduate students that I work with (this is not ranked in any particular order):
Curiosity—always questioning why and how.
Self-starter—only you can advocate for your interests and education.
Life learner—there is no rubric for life; college and graduate school is the perfect place to begin learning how to teach yourself the material you need to know to pass the test, complete course objectives, fulfill job expectations, answer your own questions, etc.
Positive—this shapes everything, your outlook on life and work, general happiness, interactions with co-workers.
Hardworking – willing to do what is needed to get the task at hand done.
Creative – ability to think outside of the box, willingness to explore and adopt concepts from other fields in order to innovate or solve existing problems.
Team member – working effectively with people with different backgrounds, knowledge, working styles and personalities is a life skill that is beneficial across a diversity of situations and careers.
Fearless – failure is an opportunity to learn and grow.
Responsible – this goes beyond just being reliable and detail oriented. It involves taking ownership over success and failure as well as both positive and negative interactions with others.
Human – have outside interests, be respectful to others, empathize with others.
Favorite place to be/thing to near campus is…
… eating lunch at Cali N Tito’s with colleagues or members of my lab.
Beyond the UGA campus, I like to…
In addition to being a scientist and a professor, I am a mother of two kids, a wife, a daughter, a sister, and a friend. I spend as much time as I can manage with my family and friends outside of work. This involves simple things like going swimming with the kids at the YMCA, going to the local library, going to museums or Lego Land in Atlanta, playing at local parks when the weather is nice, hiking at Fort Yargo State Park or Sandy Creek Nature Center, and occasionally camping in the mountains of Georgia. We also spend a lot of our vacation visiting family in Chicago, Illinois, and Traverse City, Michigan.
Favorite book/movie (and why)?
Favorite nonfiction: “Devil in the White City.” I grew up in the suburbs of Chicago, so it was really insightful and fun to read about how much of the city and world was shaped by the World Fair of 1893. There is also a side story involving a serial killer, which is totally gripping.
Favorite fiction: The “Outlander” series by Diana Gabaldon. These novels are historical fiction, mixed with fantasy and a pinch of romance. The characters are well developed, complex, and the history well researched, so is a perfect storm for losing oneself completely.
The one UGA experience I will always remember will be…
Every year my lab picks a themed costume and dresses up for Halloween. To me this is special, as it is an opportunity for our group to do something fun, wacky and together. Current pictures are on our website: https://www.themurdocklab.com/people.
Is there anything else you’d like to add?
I was an NCAA Division 1 scholar-athlete. I walked on to the University of Michigan softball team as a freshman during my undergraduate career. While I never started, I learned a lot of life skills from this experience that translate to my perspective on life, challenges, teamwork and leadership. I feel like there are stereotypes associated with student-athletes that are oftentimes unwarranted concerning their scholarship, and we should be mindful of this in our interactions with student-athletes in the classroom. I feel that they bring a lot of underappreciated assets to the table.
BACKGROUND: Cyclospora cayetanensis is an important enteric pathogen, causing diarrhea and food-borne cyclosporiasis outbreaks. For effective outbreak identification and investigation, it is essential to rapidly assess the genetic heterogeneity of C. cayetanensis specimens from cluster cases and identify the likely occurrence of outbreaks.
METHODS: In this study, we developed a quantitative PCR (qPCR) targeting the polymorphic link region between copies of the mitochondrial genome of C. cayetanensis, and evaluated the genetic heterogeneity among 36 specimens from six countries using melt curve, gel electrophoresis, and sequence analyses of the qPCR products.
RESULTS: All specimens were amplified successfully in the qPCR and produced melt peaks with different Tm values in the melt curve analysis. In gel electrophoresis of the qPCR products, the specimens yielded bands of variable sizes. Nine genotypes were identified by DNA sequencing of the qPCR products. Geographical segregation of genotypes was observed among specimens analyzed, which could be useful in geographical source-tracking.
CONCLUSIONS: The length and nucleotide sequence variations in the mitochondrial genome marker allow rapid assessment of the genetic heterogeneity among C. cayetanensis specimens by melt curve, gel electrophoresis, or DNA sequence analysis of qPCR products. The sequence data generated could be helpful in the initial source-tracking of the pathogen.
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, a debilitating condition that affects over 10 million humans in the American continents. In addition to its traditional mode of human entry via the ‘kissing bug’ in endemic areas, the infection can also be spread in non-endemic countries through blood transfusion, organ transplantation, eating food contaminated with the parasites, and from mother to fetus. Previous NMR-based studies established that the parasite expresses a variety of strain-specific and developmentally-regulated O-glycans that may contribute to virulence. In this report, we describe five synthetic O-glycan analytical standards and show their potential to enable a more facile analysis of native O-glycan isomers based on mass spectrometry.