Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Author: Donna Huber

The Vacuolar Zinc Transporter TgZnT Protects Toxoplasma gondii from Zinc Toxicity

Zinc (Zn2+) is the most abundant biological metal ion aside from iron and is an essential element in numerous biological systems, acting as a cofactor for a large number of enzymes and regulatory proteins. Zn2+ must be tightly regulated, as both the deficiency and overabundance of intracellular free Zn2+ are harmful to cells. Zn2+ transporters (ZnTs) play important functions in cells by reducing intracellular Zn2+ levels by transporting the ion out of the cytoplasm. We characterized a Toxoplasma gondii gene (TgGT1_251630, TgZnT), which is annotated as the only ZnT family Zn2+ transporter in T. gondii. TgZnT localizes to novel vesicles that fuse with the plant-like vacuole (PLV), an endosome-like organelle. Mutant parasites lacking TgZnT exhibit reduced viability in in vitro assays. This phenotype was exacerbated by increasing zinc concentrations in the extracellular media and was rescued by media with reduced zinc. Heterologous expression of TgZnT in a Zn2+-sensitive Saccharomyces cerevisiae yeast strain partially restored growth in media with higher Zn2+ concentrations. These results suggest that TgZnT transports Zn2+ into the PLV and plays an important role in the Zn2+tolerance of T. gondii extracellular tachyzoites.

IMPORTANCE Toxoplasma gondii is an intracellular pathogen of human and animals. T. gondii pathogenesis is associated with its lytic cycle, which involves invasion, replication, egress out of the host cell, and invasion of a new one. T. gondii must be able to tolerate abrupt changes in the composition of the surrounding milieu as it progresses through its lytic cycle. We report the characterization of a Zn2+ transporter of T. gondii (TgZnT) that is important for parasite growth. TgZnT restored Zn2+ tolerance in yeast mutants that were unable to grow in media with high concentrations of Zn2+. We propose that TgZnT plays a role in Zn2+ homeostasis during the T. gondii lytic cycle.

Nathan M. Chasen, Andrew J. Stasic, Beejan Asady, Isabelle Coppens, Silvia N. J. Moreno. 2019. mSphere.; 4(3). pii: e00086-19. doi: 10.1128/mSphere.00086-19.

Refugia and anthelmintic resistance: Concepts and challenges

Anthelmintic resistance is a threat to global food security. In order to alleviate the selection pressure for resistance and maintain drug efficacy, management strategies increasingly aim to preserve a proportion of the parasite population in ‘refugia’, unexposed to treatment. While persuasive in its logic, and widely advocated as best practice, evidence for the ability of refugia-based approaches to slow the development of drug resistance in parasitic helminths is currently limited. Moreover, the conditions needed for refugia to work, or how transferable those are between parasite-host systems, are not known. This review, born of an international workshop, seeks to deconstruct the concept of refugia and examine its assumptions and applicability in different situations. We conclude that factors potentially important to refugia, such as the fitness cost of drug resistance, the degree of mixing between parasite sub-populations selected through treatment or not, and the impact of parasite life-history, genetics and environment on the population dynamics of resistance, vary widely between systems. The success of attempts to generate refugia to limit anthelmintic drug resistance are therefore likely to be highly dependent on the system in hand. Additional research is needed on the concept of refugia and the underlying principles for its application across systems, as well as empirical studies within systems that prove and optimise its usefulness.

Jane E. Hodgkinson, Ray M. Kaplan, Fiona Kenyon, Eric R. Morgan, Andrew W. Park, Steve Paterson, Simon A. Babayan, Nicola J. Beesley, Collette Britton, Umer Chaudhry, Stephen R. Doyle, Vanessa O. Ezenwa, Andy Fenton, Sue B. Howell, Roz Laing, Barbara K. Mable, Louise Matthews, Jennifer McIntyre, Catherine E. Milne, Thomas A. Morrison, Jamie C. Prentice, Neil D. Sargison, Diana J.L. Williams, Adrian J. Wolstenholme, Eileen Devaney. 2019. Int J Parasitol Drugs Drug Resist.; doi: 10.1016/j.ijpddr.2019.05.001.

Functional analysis and importance for host cell infection of the Ca2+-conducting subunits of the mitochondrial calcium uniporter of Trypanosoma cruzi

We report here that Trypanosoma cruzi, the etiologic agent of Chagas disease, possesses two unique paralogs of the mitochondrial calcium uniporter complex TcMCU subunit that we named TcMCUc, and TcMCUd. The predicted structure of the proteins indicates that, as that predicted for the TcMCU and TcMCUb paralogs, they are composed of two helical membrane-spanning domains, and contain a WDXXEPXXY motif. Overexpression of each gene led to a significant increase in mitochondrial Ca2+ uptake while knockout (KO) of either TcMCUc or TcMCUd led to a loss of mitochondrial Ca2+ uptake, without affecting the mitochondrial membrane potential. TcMCUc-KO and TcMCUd-KO epimastigotes exhibited reduced growth rate in low glucose medium and alterations in their respiratory rate, citrate synthase activity and AMP/ATP ratio, while trypomastigotes had reduced ability to efficiently infect host cells and replicate intracellularly as amastigotes. By gene complementation of KO cell lines or by a newly developed knock-in approach we also studied the importance of critical amino acid residues of the four paralogs on mitochondrial Ca2+ uptake. In conclusion, the results predict a hetero-oligomeric structure for the T. cruzi MCU complex, with structural and functional differences, as compared to those in the mammalian complex.

Miguel A. Chiurillo, Noelia Lander, Mayara S. Bertolini, Anibal E. Vercesi, and Roberto Docampo. 2019. Mol Biol Cell.; mbcE19030152. doi: 10.1091/mbc.E19-03-0152

The Toxoplasma Vacuolar H+-ATPase Regulates Intracellular pH and Impacts the Maturation of Essential Secretory Proteins

Vacuolar-proton ATPases (V-ATPases) are conserved complexes that couple the hydrolysis of ATP to the pumping of protons across membranes. V-ATPases are known to play diverse roles in cellular physiology. We studied the Toxoplasma gondiiV-ATPase complex and discovered a dual role of the pump in protecting parasites against ionic stress and in the maturation of secretory proteins in endosomal-like compartments. Toxoplasma V-ATPase subunits localize to the plasma membrane and to acidic vesicles, and characterization of conditional mutants of the a1 subunit highlighted the functionality of the complex at both locations. Microneme and rhoptry proteins are required for invasion and modulation of host cells, and they traffic via endosome-like compartments in which proteolytic maturation occurs. We show that the V-ATPase supports the maturation of rhoptry and microneme proteins, and their maturases, during their traffic to their corresponding organelles. This work underscores a role for V-ATPases in regulating virulence pathways.

Andrew J.Stasic, Nathan M.Chasen, Eric J.Dykes, Stephen A.Vella, Beejan Asady, Vincent J. Starai, Silvia N.J. Moreno. 2019. Cell Rep.;27(7):2132-2146.e7. doi: 10.1016/j.celrep.2019.04.038.

The ER chaperone PfGRP170 is essential for asexual development and is linked to stress response in malaria parasites

The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterized ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localizes to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.

Heather M. Kudyba, David W. Cobb, Manuel A. Fierro, Anat Florentin, Dragan Ljolje, Balwan Singh, Naomi W. Lucchi, Vasant Muralidharan. 2019. Cell Microbiol.:e13042. doi: 10.1111/cmi.13042

Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila

This illustration depicts a dorsal view of the “common” fruit fly, or “vinegar” fly, Drosophila melanogaster.
Courtesy of Public Health Image Library

The Toll signaling pathway in Drosophila melanogaster regulates several immune-related functions, including the expression of antimicrobial peptide (AMP) genes.  The canonical Toll receptor (Toll-1) is activated by the cytokine Spätzle (Spz-1), but Drosophila encodes eight other Toll genes and five other Spz genes whose interactions with one another and associated functions are less well understood.  Here, we conducted in vitro assays in the Drosophila S2 cell line with the Toll/interleukin-1 receptor (TIR) homology domains of each Toll family member to determine if they can activate a known target of Toll-1, the promoter of the antifungal peptide gene drosomycin.  All TIR family members activated the drosomycin promoter, with Toll-1 and Toll-7 TIRs producing the highest activation.  We found that the Toll-1 and Toll-7 ectodomains bind Spz-1, -2, and -5 and also vesicular stomatitis virus (VSV) virions, and that Spz-1, -2, -5, and VSV all activated the promoters of drosomycin and several other AMP genes in S2 cells expressing full-length Toll-1 or Toll-7.  In vivo experiments indicated that Toll-1 and Toll-7 mutants could be systemically infected with two bacterial species (Enterococcus faecalis and Pseudomonas aeruginosa), the opportunistic fungal pathogen Candida albicans and VSV with different survival in adult females and males compared with wild-type fly survival.  Our results suggest that all Toll family members can activate several AMP genes.  Our results further indicate that Toll-1 and Toll-7 bind multiple Spz proteins and also VSV, but differentially affect adult survival after systemic infection, potentially because of sex-specific differences in Toll-1 and Toll-7 expression.

Munmun Chowdhury, Chun-Feng Li, Zhen He, Yuzhen Lu, Xu-Sheng Liu, Yu-Feng Wang, Y. Tony Ip, Michael R. Strand and Xiao-Qiang Yu. 2019. J Biol Chem. pii: jbc.RA118.006804. doi: 10.1074/jbc.RA118.006804

What’s Bugging MICHAEL STRAND?

by Leigh Beesonmosquito

When warm weather approaches, so do pesky little bloodsucking pests.

The unassuming mosquito may be smaller than a dime, but it packs a serious punch, killing more people each year than any other animal. And with average temperatures climbing around the globe, different mosquito species are making their way farther north than ever before and bringing their diseases—malaria, West Nile, dengue, and more—along for the ride.

But thanks to recent discoveries at the University of Georgia, it may soon become easier to fend off the swarm.

Regents Professor of Entomology Michael Strand’s lab found that microorganisms, or microbes, in a mosquito’s gut are essential for growth and development. Mosquito larvae spend anywhere from a few days to two weeks developing in pools of water that can be as small as an upside-down bottle cap. Microbes colonize the larvae’s digestive tracts, forming a community of microorganisms that enables the larvae to mature into adult mosquitos.

 

The implications of the findings could lead to new approaches for mosquito control.

“If you can disrupt their growth cycle, you could control mosquito populations,” Strand says. “Certain combinations of these organisms that exist in the digestive system of the mosquito also affect how well they are able to acquire and transmit disease-causing microorganisms to people.

 

Understanding how these organisms alter the mosquito’s ability to transmit diseases offers the potential for increasing resistance to certain organisms they can pass on to people.”

From a more basic science perspective, insects provide a more simplified version of a microbiome, the ecological community of microorganisms that call a space home. Researchers often discuss the roles microbiomes, such as that of the human gut, play in an individual’s health, but it’s difficult to sort through the billions of different organisms that can be present. Mosquitoes, and other insects in general, are much less complex, sometimes hosting only several hundreds of microorganisms in their digestive tracts. The smaller number of microbes make it easier for researchers to study.

“In effect, this simplicity reduces the many variables involved,” Strand says. “Some of the rules determining the importance of gut microbes in mosquito development may also have generalizable applications in how similar processes are regulated in larger animals.”

 

 

Sting like a Bee

Mosquitoes aren’t the only insects Strand studies.

His interests lie in parasitology, or how parasites interact with the animals they feed from. Parasitic wasps, comprising over a million different species, are the perfect medium to study parasite-host interactions.

Around 100 million years ago, some parasitic wasps were infected by a virus that became part of their genome. Wasps coopted that virus to deliver different types of genes into hosts.

One way wasps accomplish that is by injecting the coopted virus into other insects along with their eggs. The virus then infects the insects’ cells in much the same way as modern medicine’s gene therapies that use viruses to introduce genes into human patients for disease prevention or treatment.

The virus’ genes suppress the host insect’s immune defenses, which would otherwise destroy the foreign eggs. The wasps can then hatch and develop into adults while slowly consuming the host from the inside out.

SUPPORT OUR RESEARCH

Give to the Center for Tropical & Emerging Global Diseases General Fund

[button size=’large’ style=” text=’Give Now’ icon=” icon_color=” link=’https://ctegd.uga.edu/give/’ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=’#b80d32′ hover_background_color=” font_style=” font_weight=” text_align=’center’ margin=”]

 

The article first appeared on UGA’s Great Commitments.

 

MICU1 and MICU2 Play an Essential Role in Mitochondrial Ca2+ Uptake, Growth, and Infectivity of the Human Pathogen Trypanosoma cruzi

The mitochondrial Ca2+ uptake in trypanosomatids, which belong to the eukaryotic supergroup Excavata, shares biochemical characteristics with that of animals, which, together with fungi, belong to the supergroup Opisthokonta. However, the composition of the mitochondrial calcium uniporter (MCU) complex in trypanosomatids is quite peculiar, suggesting lineage-specific adaptations. In this work, we used Trypanosoma cruzi to study the role of orthologs for mitochondrial calcium uptake 1 (MICU1) and MICU2 in mitochondrial Ca2+ uptake. T. cruzi MICU1 (TcMICU1) and TcMICU2 have mitochondrial targeting signals, two canonical EF-hand calcium-binding domains, and localize to the mitochondria. Using the CRISPR/Cas9 system (i.e., clustered regularly interspaced short palindromic repeats with Cas9), we generated TcMICU1 and TcMICU2 knockout (-KO) cell lines. Ablation of either TcMICU1 or TcMICU2 showed a significantly reduced mitochondrial Ca2+uptake in permeabilized epimastigotes without dissipation of the mitochondrial membrane potential or effects on the AMP/ATP ratio or citrate synthase activity. However, none of these proteins had a gatekeeper function at low cytosolic Ca2+ concentrations ([Ca2+]cyt), as occurs with their mammalian orthologs. TcMICU1-KO and TcMICU2-KO epimastigotes had a lower growth rate and impaired oxidative metabolism, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes. The findings of this work, which is the first to study the role of MICU1 and MICU2 in organisms evolutionarily distant from animals, suggest that, although these components were probably present in the last eukaryotic common ancestor (LECA), they developed different roles during evolution of different eukaryotic supergroups. The work also provides new insights into the adaptations of trypanosomatids to their particular life styles.

IMPORTANCE Trypanosoma cruzi is the etiologic agent of Chagas disease and belongs to the early-branching eukaryotic supergroup Excavata. Its mitochondrial calcium uniporter (MCU) subunit shares similarity with the animal ortholog that was important to discover its encoding gene. In animal cells, the MICU1 and MICU2 proteins act as Ca2+ sensors and gatekeepers of the MCU, preventing Ca2+ uptake under resting conditions and favoring it at high cytosolic Ca2+ concentrations ([Ca2+]cyt). Using the CRISPR/Cas9 technique, we generated TcMICU1 and TcMICU2 knockout cell lines and showed that MICU1 and -2 do not act as gatekeepers at low [Ca2+]cyt but are essential for normal growth, host cell invasion, and intracellular replication, revealing lineage-specific adaptations.

Mayara S. Bertolini, Miguel A. Chiurillo, Noelia Lander, Anibal E. Vercesi, Roberto Docampo. 2019. MBio.; 10(3). pii: e00348-19. doi: 10.1128/mBio.00348-19.

Distinct amino acid and lipid perturbations characterize acute versus chronic malaria

Chronic malaria is a major public health problem and significant challenge for disease eradication efforts. Despite its importance, the biological factors underpinning chronic malaria are not fully understood. Recent studies have shown that host metabolic state can influence malaria pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman primates with a range of parasitemias and clinical signs. In rhesus macaques infected with Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected during a high parasitemic acute phase and many of these reverted to baseline levels once a low parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum cases. In summary, distinct host-parasite metabolic environments have been uncovered that characterize acute versus chronic malaria, providing insights into the underlying host-parasite biology of malaria disease progression.

Regina Joice Cordy, Rapatbhorn Patrapuvich, Loukia N. Lili, Monica Cabrera-Mora, Jung-Ting Chien, Gregory K. Tharp, Manoj Khadka, Esmeralda V.S. Meyer, Stacey A. Lapp, Chester J. Joyner, AnaPatricia Garcia, Sophia Banton, ViLinh Tran, Viravarn Luvira, Siriwan Rungin, Teerawat Saeseu, Nattawan Rachaphaew, Suman B. Pakala, Jeremy D. DeBarry, MaHPIC Consortium, Jessica C. Kissinger, Eric A. Ortlund, Steven E. Bosinger, John W. Barnwell, Dean P. Jones, Karan Uppal, Shuzhao Li, Jetsumon Sattabongkot, Alberto Moreno, and Mary R. Galinski. 2019. JCI Insight.; 4(9). pii: 125156. doi: 10.1172/jci.insight.125156.