Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Author: Donna Huber

Rick Tarleton elected AAAS Fellow

Photo credit: Andrew Tucker

University of Georgia researcher Rick Tarleton has been elected as a 2020 American Association for the Advancement of Science (AAAS) Fellow by the AAAS Council “for distinguished contributions to the field of biological sciences, particularly for his research contributions and leadership to control Chagas Disease.”

Tarleton is a Regents Professor in the Department of Cellular Biology and UGA Athletic Association Distinguished Professor in Biological Sciences.

“It is indeed an honor to be acknowledged in this way – it reflects the strong efforts of many past and present members of the lab,” stated Tarleton, founder of the Center for Tropical and Emerging Global Diseases.

Since his undergraduate days, Tarleton’s research has focused on Trypanosoma cruzi infection, which causes the potentially fatal illness Chagas Disease. Historically, Tarleton’s research has attempted to answer broad questions such as how is immune control initiated and maintained during the infection, how does T. cruzi manage to avoid immune clearance and maintain an infection of decades in host, and what is the relationship between immunity, parasite persistence, and disease development. In an effort to answer these questions and more, Tarleton’s research group has developed tools to better study T. cruzi. They pioneered the use of the gene editing tool CRISPR in T. cruzi. Recently, they applied light sheet fluorescent microscopy to view infection in whole mouse organs. The Tarleton Research Group is also actively pursuing drug discovery for T. cruzi infection in a number of animal models including rodent, dog, and nonhuman primates. Their recent discovery of a dormancy stage in T. cruzi infections has revolutionized their drug treatment research, bringing them one step closer to finding a cure for this infection that affects at least 6 million people.

Tarleton’s work has largely been funded by the National Institutes of Health, the Wellcome Trust, the Burroughs Wellcome Fund, and partnerships with several pharmaceutical groups.

In addition to establishing the Center for Tropical and Emerging Global Diseases at UGA, he has been instrumental in organizing the Chagas Drug Discovery Consortium, which brings together U.S.-based laboratories with international groups. Tarleton is also the founder and current president of The Chagas Disease Foundation. He has been honored with a number of awards, including the Lamar Dodd Outstanding Researcher Award and being named a Burroughs Wellcome Fund Scholar in Molecular Parasitology. In 2017, he was elected as a Fellow of the American Academy of Microbiology.

“Rick’s election as a Fellow of AAAS is recognition of his immense contributions to the study of T. cruzi,” said Dennis Kyle, director of the Center for Tropical and Emerging Global Diseases. “His research has advanced our understanding of immune response to the pathogen, has developed new molecular approaches to study the parasite, and has accelerated drug discovery for Chagas Disease.”

Jessica Kissinger elected ASTMH Fellow

Jessica Kissinger
Jessica Kissinger (Photo by Peter Frey)

University of Georgia geneticist Jessica Kissinger has been elected a 2020 American Society of Tropical Medicine and Hygiene Fellow.

Kissinger is a Distinguished Research Professor in the Department of Genetics, part of the Franklin College of Arts and Sciences. She also holds appointments in the Institute of Bioinformatics and Center for Tropical and Emerging Global Diseases.

“I value belonging to a society that is focused on global health and lessening the burden of tropical infectious diseases, and I am truly honored to be recognized as a Fellow at a time when a focus on public health, science and climate change is so important for all of us,” said Kissinger.

Kissinger’s research focuses on parasite genomics and the biology of genome evolution. Her research group is trying to answer big questions such as how genomes evolve, what is the fate of horizontally transferred genes, which genes are phylogenetically restricted, and how do organellar genomes evolve? The answers to these questions will increase the understanding of parasite biology and help researchers identify potential drug and vaccine targets.

Kissinger’s research mainly focuses on Apicomplexan parasites, a group of parasites that include species that cause malaria, toxoplasmosis and cryptosporidiosis. Projects in her laboratory include the development of tools for data integration, data mining, comparative genomics and assessing the phylogenetic distribution of genes. Her research group oversees integrated genomic database resources, which are part of the Eukaryotic Pathogen, Vector and Host Informatics Resources (VEupathDB.org), funded by the National Institutes of Health. This resource provides the international research community with open access to data for many pathogenic and related organisms.

Kissinger’s research has been funded by the NIH, the Bill and Melinda Gates Foundation, the Defense Advanced Research Projects Agency, the Wellcome Trust, the United States Department of Agriculture, and the National Science Foundation. Notably, she is the joint principal investigator of a $38.4 million (if all options are exercised) NIH contract that supports VEupathDB.

Kissinger joined the faculty of UGA in 2001. She was a founding member of the Institute of Bioinformatics at UGA to facilitate cutting-edge interdisciplinary research in bioinformatics/computational biology and its applications. Kissinger has been recognized many times for research and leadership. She has been awarded a Creative Research Medal, Faculty Excellence in Diversity Leadership Award and the Richard F. Reiff Internationalization Award from UGA. In 2014, she was awarded a Special Visiting Professorship from Brazil’s national science research agency, and most recently, she was awarded a Fulbright U.S. Scholar award to teach and conduct research at Makerere University in Uganda.

“Being elected as a Fellow of the American Society of Tropical Medicine and Hygiene is recognition of a scientist that has made significant contributions to global public health,” said Dennis Kyle, director of the Center for Tropical and Emerging Global Diseases. “Dr. Kissinger richly deserves this award, and I look forward to her continued leadership in tropical medicine research.”

Towards a comprehensive research and development plan to support the control, elimination and eradication of neglected tropical diseases

To maximise the likelihood of success, global health programmes need repeated, honest appraisal of their own weaknesses, with research undertaken to address any identified gaps. There is still much to be learned to optimise work against neglected tropical diseases. To facilitate that learning, a comprehensive research and development plan is required. Here, we discuss how such a plan might be developed.

David Mabey, Ellen Agler, John H Amuasi, Leda Hernandez, T Déirdre Hollingsworth, Peter J Hotez, Patrick J Lammie, Mwelecele N Malecela, Sultani H Matendechero, Eric Ottesen, Richard O Phillips, John C Reeder, Célia Landmann Szwarcwald, Joseph P Shott, Anthony W Solomon, Andrew Steer, Soumya Swaminathan. Trans R Soc Trop Med Hyg. 2020 Nov 11;traa114. doi: 10.1093/trstmh/traa114.

The nucleocytosolic O-fucosyltransferase Spindly affects protein expression and virulence in Toxoplasma gondii

Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically-expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins, suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.

Giulia Bandini, Carolina Agop-Nersesian, Hanke van der Wel, Msano Mandalasi , Hyun W Kim, Christopher M West, John Samuelson. J Biol Chem. 2020 Nov 6;jbc.RA120.015883. doi: 10.1074/jbc.RA120.015883.

Outbreak News Today Interviews Rick Tarleton

Recently, Dr. Rick Tarleton was interviewed by Outbreak News Today about his recently published study in Science Translational Medicine.

[button size=’large’ style=” text=’Listen Now’ icon=” icon_color=’BA0C2F’ link=’http://outbreaknewstoday.com/chagas-disease-treatment-research-with-rick-tarleton-phd-81114/’ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=” hover_background_color=” font_style=” font_weight=” text_align=” margin=”]

Diagnostics and the neglected tropical diseases roadmap: setting the agenda for 2030

Accurate and reliable diagnostic tools are an essential requirement for neglected tropical diseases (NTDs) programmes. However, the NTD community has historically underinvested in the development and improvement of diagnostic tools, potentially undermining the successes achieved over the last 2 decades. Recognizing this, the WHO, in its newly released draft roadmap for NTD 2021-2030, has identified diagnostics as one of four priority areas requiring concerted action to reach the 2030 targets. As a result, WHO established a Diagnostics Technical Advisory Group (DTAG) to serve as the collaborative mechanism to drive progress in this area. Here, the purpose and role of the DTAG are described in the context of the challenges facing NTD programmes.

Ashley A Souza, Camilla Ducker, Daniel Argaw, Jonathan D King, Anthony W Solomon, Marco A Biamonte, Rhea N Coler, Israel Cruz, Veerle Lejon, Bruno Levecke, Fabricio K Marchini, Michael Marks, Pascal Millet, Sammy M Njenga, Rahmah Noordin, René Paulussen, Esvawaran Sreekumar, Patrick J Lammie. Trans R Soc Trop Med Hyg. 2020 Nov 9;traa118. doi: 10.1093/trstmh/traa118.

Trainee Spotlight: Megna Tiwari

Megna Tiwari 

Megna Tiwari is a second-year Ph.D. trainee in the laboratory of Diego Huet. She is originally from Newport Beach, California and completed her undergraduate degree in Cell, Molecular and Developmental Biology at the University of California, Riverside (UCR). While at UCR, she worked as an undergraduate researcher in the fungal genomics lab of Dr. Jason Stajich for 2 years and co-founded Women in STEM Engaging Riverside (WISER). After graduation, she worked as a blood bank lab technician at LifeStream Blood Bank where she screened for and routinely found blood samples positive for understudied pathogenic parasites. Her fascination with pathogenic parasites led her to seek a thesis-based Master of Science in Biology at California State University, Fullerton under the supervision of Dr. Veronica Jimenez. During this period, Megna worked on understanding the functional and structural relationship of mechanosensitive ion channels found in T. cruzi and cemented her passion for molecular parasitology.

Megna has been awarded a CTEGD T32 Training Fellowship. She currently serves as Vice-president of CTEGD’s Graduate Student Association and New Student Liaison for the Department of Cellular Biology’s Graduate Student Association.

Why did you choose UGA? 

My master’s research in parasitology reaffirmed my passion for research in unconventional parasitic pathogens. Therefore, I applied for doctoral programs that would allow me to remain in the field of cell and molecular parasitology and the CTEGD at UGA was the perfect place for me to obtain the best possible training as a parasitologist.

What is your research focus/project and why are you interested in the topic? 

The over-reaching research goal of the Huet lab is the investigation of the highly divergent metabolic adaptations of apicomplexans. My research interests in the lab have led me to study the role of the ATP synthase in the apicomplexan Toxoplasma gondii, the causative agent of toxoplasmosis. For my project, I am examining the role of apicomplexan-specific ATP synthase subunits and how they might contribute to the regulation of the ATP synthase function in the parasite.

What are your future professional plans?  

Following graduation from UGA, I hope to continue on for a postdoctoral research position in parasitology.

What do you hope to do for your capstone experience? 

For my capstone experience, I want to gain an outside perspective and understanding of foreign research culture that I can apply to my own research when I return to the CTEGD. 

What is your favorite thing about UGA and/or Athens? 

At the CTEGD, I love the collaborative nature. If I am trying to learn a new technique or understand new concepts, I am able to easily walk down the hall to a neighboring lab and get advice. In Athens, for entertainment, I love the endless craft beer scene and I love all the greenery and being able to hike gaps of the Appalachian trail!

 

Support trainees like Megna by giving today to the Center for Tropical & Emerging Global Diseases.

[button size=’large’ style=” text=’Give Now’ icon=” icon_color=’BA0C2F’ link=’https://ctegd.uga.edu/give/’ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=” hover_background_color=” font_style=” font_weight=” text_align=’center’ margin=”]

Stronger treatments could cure Chagas disease

3D (left) and single slice (right) light sheet microscopy imaging of the heart of a mouse infected with two strains (red and blue) of Trypanosoma cruzi. (Image credit: Fernando Sanchez-Valdez)

Research shows stronger but less frequent drug doses could be key

Researchers in the University of Georgia’s Center for Tropical and Emerging Global Diseases have found that a more intensive, less frequent drug regimen with currently available therapeutics could cure the infection that causes Chagas disease, a potentially life-threatening illness affecting up to 300,000 people in the United States.

Trypanosoma cruzi is a single-celled parasitic organism that causes Chagas disease. At least 6 million people are infected by T. cruzi, mostly in South America. Current drug therapies have been ineffective in completely clearing the infection and are associated with severe adverse side effects.

A single dose of benznidazole has been shown to be highly effective in killing more than 90% of parasites. However, after a CTEGD team found some of the parasites enter into a dormancy stage, the researchers hypothesized that an intermittent treatment schedule could be effective.

Rick Tarleton
Photo credit: Peter Frey/UGA

“Current human trials are only looking at giving lower doses over a shorter time period, which is the exact opposite of what we show works.”  — Rick Tarleton

“In this system we can see what a single dose of drug does,” said Rick Tarleton, Regents’ Professor in UGA’s department of cellular biology. “Does it make sense to give a drug twice daily when the remaining dormant parasites are insensitive to it?”

The investigators found that giving as little as two-and-a-half times the typical daily dose of benznidazole, once per week for 30 weeks, completely cleared the infection, whereas giving the standard daily dose once a week for a longer period did not.

“Current human trials are only looking at giving lower doses over a shorter time period, which is the exact opposite of what we show works,” said Tarleton.

Since Tarleton’s team worked with a mouse model, how this change in treatment regimen will translate in humans is yet unknown, as are any potential side effects of the higher doses. Adverse reactions already are a problem with current treatments; the hope is that side effects from a less frequent dosage would be more tolerable.

Significant challenge

Assessing the success of treatments in Chagas disease is a significant challenge. Tissue samples from infected organisms might not be representative of the entire organ or animal, since low numbers of persistent, dormant parasites can be difficult to detect. Therefore, Tarleton’s group used light sheet fluorescence microscopy to view intact whole organs from infected mice.

“With light sheet fluorescence microscopy, you have a broad view of potentially any tissue in the mouse that allows for dependable assessment of parasite load and persistence,” said Tarleton. “It gives you an incredible view of the infection.”

Using this technology, they learned something new about the dormant parasites: Some were still susceptible to drug treatment. This provides hope that new drug therapies could be developed to target these parasites.

“Discovery of new drugs should continue,” Tarleton said. “We still need better drugs.”

 

Co-led by assistant research scientist Juan Bustamante and research professional Fernando Sanchez-Valdez in Tarleton’s research group, the study’s findings appear in Science Translational Medicine.

 

 

A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease

A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is that current treatment regimens do not address the drug insensitivity of transiently dormant T. cruzi amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish T. cruzi infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.5 to 5 times the standard daily dose rapidly eliminated actively replicating parasites and ultimately eradicated the residual, transiently dormant parasite population in mice. This outcome was initially confirmed in “difficult to cure” mouse infection models using immunological, parasitological, and molecular biological approaches and ultimately corroborated by whole organ analysis of optically clarified tissues using light sheet fluorescence microscopy (LSFM). This tool was effective for monitoring pathogen load in intact organs, including detection of individual dormant parasites, and for assessing treatment outcomes. LSFM-based analysis also suggested that dormant amastigotes of T. cruzi may not be fully resistant to trypanocidal compounds such as benznidazole. Collectively, these studies provide important information on the phenomenon of dormancy in T. cruzi infection in mice, demonstrate methods to therapeutically override dormancy using a currently available drug, and provide methods to monitor alternative therapeutic approaches for this, and possibly other, low-density infectious agents.

Juan M. Bustamante, Fernando Sanchez-Valdez, Angel M. Padilla, Brooke White, Wei Wang and Rick L. Tarleton. Science Translational Medicine 28 Oct 2020: Vol. 12, Issue 567, eabb7656. DOI: 10.1126/scitranslmed.abb7656