Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Author: Donna Huber

MdBVe46 is an envelope protein that is required for virion formation by Microplitis demolitor bracovirus

Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.

Michael J Arvin, Ange Lorenzi, Gaelen R Burke, Michael R Strand. J Gen Virol. 2021 Feb 16. doi: 10.1099/jgv.0.001565.

A redox-active crosslinker reveals an essential and inhibitable oxidative folding network in the endoplasmic reticulum of malaria parasites

Oxidative folding in the P. falciparum ER

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.

David W. Cobb, Heather M. Kudyba, Alejandra Villegas, Michael R. Hoopmann, Rodrigo P. Baptista, Baylee Bruton, Michelle Krakowiak, Robert L. Moritz, Vasant Muralidharan. PLoS Pathog. 2021 Feb 3;17(2):e1009293. doi: 10.1371/journal.ppat.1009293.

Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease

The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.

Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL (2021) Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 17(1): e1009254. https://doi.org/10.1371/journal.ppat.1009254

CTEGD Emerging Fellows Symposium

We invite recent and soon-to-graduate students (from any biological discipline) to apply for funded postdoctoral fellowships and positions to study parasitic diseases at the University of Georgia. Selected applicants will present their research to the CTEGD community on May 3, 2021 via Zoom at CTEGD Emerging Fellows Symposium. The applicants will get to meet with several faculty at CTEGD, as well as former and current trainees of the T32 program. We strongly support and encourage scholars from historically excluded or underrepresented groups to apply.

To apply, please send a cover letter and your CV by April 2, 2021 to ctegdt32@uga.edu

Program Goals

Since 2004, the Center for Tropical and Emerging Global Diseases at UGA has received funding from the NIH for an institutional training grant with the purpose of training researchers to become independent scientists who study parasitic diseases in the context of global health.

Eligibility
  1. US citizen or permanent resident (if applying for T32 fellowship)
  2. PhD received on or before August 1, 2021

 

Program Highlights

The Training in Tropical and Emerging Global Diseases program seeks fundamental insights into protozoan and helminth parasites and their interactions with mammalian hosts and invertebrate vectors. The CTEGD is an exceptional place to do a postdoc with an invigorating and supportive environment. Athens is a quirky, fun, and affordable city to live in.

The role of potassium and host calcium signaling in Toxoplasma gondii egress

Toxoplasma gondii is an obligate intracellular parasite and replicates inside a parasitophorous vacuole (PV) within the host cell. The membrane of the PV (PVM) contains pores that permits for equilibration of ions and small molecules between the host cytosol and the PV lumen. Ca2+ signaling is universal and both T. gondii and its mammalian host cell utilize Ca2+ signals to stimulate diverse cellular functions. Egress of T. gondii from host cells is an essential step for the infection cycle of T. gondii, and a cytosolic Ca2+ increase initiates a Ca2+ signaling cascade that culminates in the stimulation of motility and egress. In this work we demonstrate that intracellular T. gondii tachyzoites are able to take up Ca2+ from the host cytoplasm during host cell signaling events. Both intracellular and extracellular Ca2+ sources are important in reaching a threshold of parasite cytosolic Ca2+ needed for successful egress. Two peaks of Ca2+ were observed in egressing single parasites with the second peak resulting from Ca2+ entry. We patched infected host cells to allow the delivery of precise concentrations of Ca2+ for the stimulation of motility and egress. Using this approach of patching infected host cells, allowed us to determine that increasing the host cytosolic Ca2+ to a specific concentration can trigger egress, which is further accelerated by diminishing the concentration of potassium (K+).

Stephen A Vella, Christina A Moore, Zhu-Hong Li, Miryam A Hortua Triana, Evgeniy Potapenko, Silvia N J Moreno. Cell Calcium. 2021 Jan 19;94:102337. doi: 10.1016/j.ceca.2020.102337

Analysis of Long Non-Coding RNA in Cryptosporidium parvum Reveals Significant Stage-Specific Antisense Transcription

Cryptosporidium is a protist parasite that has been identified as the second leading cause of moderate to severe diarrhea in children younger than two and a significant cause of mortality worldwide. Cryptosporidium has a complex, obligate, intracellular but extra cytoplasmic lifecycle in a single host. How genes are regulated in this parasite remains largely unknown. Long non-coding RNAs (lncRNAs) play critical regulatory roles, including gene expression across a broad range of organisms. Cryptosporidium lncRNAs have been reported to enter the host cell nucleus and affect the host response. However, no systematic study of lncRNAs in Cryptosporidium has been conducted to identify additional lncRNAs. In this study, we analyzed a C. parvum in vitro strand-specific RNA-seq developmental time series covering both asexual and sexual stages to identify lncRNAs associated with parasite development. In total, we identified 396 novel lncRNAs, mostly antisense, with 86% being differentially expressed. Surprisingly, nearly 10% of annotated mRNAs have an antisense transcript. lncRNAs occur most often at the 3′ end of their corresponding sense mRNA. Putative lncRNA regulatory regions were identified and many appear to encode bidirectional promoters. A positive correlation between lncRNA and upstream mRNA expression was observed. Evolutionary conservation and expression of lncRNA candidates was observed between C. parvumC. hominis and C. baileyi. Ten C. parvum protein-encoding genes with antisense transcripts have P. falciparum orthologs that also have antisense transcripts. Three C. parvum lncRNAs with exceptional properties (e.g., intron splicing) were experimentally validated using RT-PCR and RT-qPCR. This initial characterization of the C. parvum non-coding transcriptome facilitates further investigations into the roles of lncRNAs in parasite development and host-pathogen interactions.

Yiran Li, Rodrigo P. Baptista, Adam Sateriale, Boris Striepen and Jessica C. Kissinger. Front Cell Infect Microbiol. 2021 Jan 14;10:608298. doi: 10.3389/fcimb.2020.608298. eCollection 2020.

The Inositol Pyrophosphate Biosynthetic Pathway of Trypanosoma cruzi

Inositol phosphates (IPs) are phosphorylated derivatives of myo-inositol involved in the regulation of several cellular processes through their interaction with specific proteins. Their synthesis relies on the activity of specific kinases that use ATP as phosphate donor. Here, we combined reverse genetics and liquid chromatography coupled to mass spectrometry (LC-MS) to dissect the inositol phosphate biosynthetic pathway and its metabolic intermediates in the main life cycle stages (epimastigotes, cell-derived trypomastigotes, and amastigotes) of Trypanosoma cruzi, the etiologic agent of Chagas disease. We found evidence of the presence of highly phosphorylated IPs, like inositol hexakisphosphate (IP6), inositol heptakisphosphate (IP7), and inositol octakisphosphate (IP8), that were not detected before by HPLC analyses of the products of radiolabeled exogenous inositol. The kinases involved in their synthesis (inositol polyphosphate multikinase (TcIPMK), inositol 5-phosphate kinase (TcIP5K), and inositol 6-phosphate kinase (TcIP6K)) were also identified. TcIPMK is dispensable in epimastigotes, important for the synthesis of polyphosphate, and critical for the virulence of the infective stages. TcIP5K is essential for normal epimastigote growth, while TcIP6K mutants displayed defects in epimastigote motility and growth. Our results demonstrate the relevance of highly phosphorylated IPs in the life cycle of T. cruzi.

Brian S Mantilla, Leticia D Do Amaral, Henning J Jessen, Roberto Docampo. ACS Chem Biol. 2021 Jan 7. doi: 10.1021/acschembio.0c00759

The IP 3 receptor and Ca 2+ signaling in trypanosomes

Trypanosoma cruzi, and the T. brucei group of parasites cause neglected diseases that affect millions of people around the world. These unicellular microorganisms have complex life cycles involving an insect vector and a mammalian host. Both groups of pathogens possess an inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) signaling pathway, and an IP3 receptor, but with lineage-specific adaptations that make them different from their mammalian counterparts. The phospholipase C (PLC), which hydrolyzes phosphatidyl inositol 4,5-bisphosphate (PIP2) to IP3 is N-terminally myristoylated and palmitoylated. Acidocalcisomes, which are lysosome-related organelles rich in polyphosphate, are the main intracellular Ca2+ stores. The inositol 1,4,5-trisphosphate receptor (IP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. The trypanosome IP3R is stimulated by luminal phosphate and pyrophosphate, which are hydrolysis products of polyphosphate (polyP), and inhibited by tripolyphosphate (polyP3), which is the most abundant polyP in acidocalcisomes. Ca2+ signaling is important for host cell invasion and differentiation and to maintain cellular bioenergetics.

Roberto Docampo, Guozhong Huang. Biochim Biophys Acta Mol Cell Res. 2021 Jan 6;118947. doi: 10.1016/j.bbamcr.2021.118947

Affinity‐based proteomics reveals novel targets of inositol pyrophosphate (5‐IP7)‐dependent phosphorylation and binding in Trypanosoma cruzi replicative stages

Diphosphoinositol-5-pentakisphosphate (5-PP-IP5 ), also known as inositol heptakisphosphate (5-IP7 ), has been described as a high-energy phosphate metabolite that participates in the regulation of multiple cellular processes through protein binding or serine pyrophosphorylation, a post-translational modification involving a β-phosphoryl transfer. In this study, utilizing an immobilized 5-IP7 affinity reagent, we performed pull-down experiments coupled with mass spectrometry identification, and bioinformatic analysis, to reveal 5-IP7 -regulated processes in the two proliferative stages of the unicellular parasite Trypanosoma cruzi. Our protein screen clearly defined two cohorts of putative targets either in the presence of magnesium ions or in metal-free conditions. We endogenously tagged four protein candidates and immunopurified them to assess whether 5-IP7 -driven phosphorylation is conserved in T. cruzi. Among the most interesting targets, we identified a choline/o-acetyltransferase domain-containing phosphoprotein that undergoes 5-IP7 -mediated phosphorylation events at a polyserine tract (Ser578-580 ). We also identified a novel SPX domain-containing phosphoribosyl transferase [EC 2.7.6.1] herein termed as TcPRPPS4. Our data revealed new possible functional roles of 5-IP7 in this divergent eukaryote, and provided potential new targets for chemotherapy.

Brian S Mantilla, Karunakaran Kalesh, Nathaniel W Brown Jr, Dorothea Fiedler, Roberto Docampo. Mol Microbiol. 2020 Dec 22. doi: 10.1111/mmi.14672.

Evolution of the monitoring and evaluation strategies to support the World Health Organization’s Global Programme to Eliminate Lymphatic Filariasis

The Global Programme to Eliminate Lymphatic Filariasis (GPELF) was established with the ambitious goal of eliminating LF as a public health problem. The remarkable success of the GPELF over the past 2 decades in carrying out its principal strategy of scaling up and scaling down mass drug administration has relied first on the development of a rigorous monitoring and evaluation (M&E) framework and then the willingness of the World Health Organization and its community of partners to modify this framework in response to the practical experiences of national programmes. This flexibility was facilitated by the strong partnership that developed among researchers, LF programme managers and donors willing to support the necessary research agenda. This brief review summarizes the historical evolution of the GPELF M&E strategies and highlights current research needed to achieve the elimination goal.

Patrick J Lammie, Katherine M Gass, Jonathan King, Michael S Deming, David G Addiss, Gautam Biswas, Eric A Ottesen, Ralph Henderson. Int Health. 2020 Dec 22;13(Supplement_1):S65-S70. doi: 10.1093/inthealth/ihaa084.