Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Author: Donna Huber

The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions

Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL), an enzyme that catalyzes histidine deamination with production of ammonia (NH3) and urocanate, is responsible for acidocalcisome alkalinization. Histidine addition to live parasites expressing HAL fused to the pH-sensitive emission biosensor green fluorescent protein (GFP) variant pHluorin induced alkalinization of acidocalcisomes. PolyP decreased HAL activity of epimastigote lysates or the recombinant protein but did not cause its polyphosphorylation, as determined by the lack of HAL electrophoretic shift on NuPAGE gels using both in vitro and in vivo conditions. We demonstrate that HAL binds strongly to polyP and localizes to the acidocalcisomes and cytosol of the parasite. Four lysine residues localized in the HAL C-terminal region are instrumental for its polyP binding, its inhibition by polyP, its function inside acidocalcisomes, and parasite survival under starvation conditions. Expression of HAL in yeast deficient in polyP degradation decreased cell fitness. This effect was enhanced by histidine and decreased when the lysine-rich C-terminal region was deleted. In conclusion, this study highlights a mechanism for stimulation of acidocalcisome alkalinization linked to amino acid metabolism.

IMPORTANCE Trypanosoma cruzi is the etiologic agent of Chagas disease and is characterized by the presence of acidocalcisomes, organelles rich in phosphate and calcium. Release of these molecules, which are necessary for growth and cell signaling, is induced by alkalinization, but a physiological mechanism for acidocalcisome alkalinization was unknown. In this work, we demonstrate that a histidine ammonia lyase localizes to acidocalcisomes and is responsible for their alkalinization.

Brian S Mantilla, Cristina Azevedo, Paul W Denny, Adolfo Saiardi, Roberto Docampo. mBio. 2021 Nov 2;e0198121. doi: 10.1128/mBio.01981-21.

Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory “sensing-and-alarm” function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.

Mitchell N Lefebvre, Fionna A Surette, Scott M Anthony, Rahul Vijay, Isaac J Jensen, Lecia L Pewe, Lisa S Hancox, Natalija Van Braeckel-Budimir, Stephanie van de Wall, Stina L Urban, Madison R Mix, Samarcith P Kurup, Vladimir P Badovinac, Noah S Butler, John T Harty. Cell Rep. 2021 Nov 2;37(5):109956. doi: 10.1016/j.celrep.2021.109956.

VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.

Beatrice Amos, Cristina Aurrecoechea, Matthieu Barba, Ana Barreto, Evelina Y Basenko, Wojciech Bażant, Robert Belnap, Ann S Blevins, Ulrike Böhme, John Brestelli, Brian P Brunk, Mark Caddick, Danielle Callan, Lahcen Campbell, Mikkel B Christensen, George K Christophides, Kathryn Crouch, Kristina Davis, Jeremy DeBarry, Ryan Doherty, Yikun Duan, Michael Dunn, Dave Falke, Steve Fisher, Paul Flicek, Brett Fox, Bindu Gajria, Gloria I Giraldo-Calderón, Omar S Harb, Elizabeth Harper, Christiane Hertz-Fowler, Mark J Hickman, Connor Howington, Sufen Hu, Jay Humphrey, John Iodice, Andrew Jones, John Judkins, Sarah A Kelly, Jessica C Kissinger, Dae Kun Kwon, Kristopher Lamoureux, Daniel Lawson, Wei Li, Kallie Lies, Disha Lodha, Jamie Long, Robert M MacCallum, Gareth Maslen, Mary Ann McDowell, Jaroslaw Nabrzyski, David S Roos, Samuel S C Rund, Stephanie Wever Schulman, Achchuthan Shanmugasundram, Vasily Sitnik, Drew Spruill, David Starns, Christian J Stoeckert, Sheena Shah Tomko, Haiming Wang, Susanne Warrenfeltz, Robert Wieck, Paul A Wilkinson, Lin Xu, Jie Zheng. Nucleic Acids Res. 2021 Oct 28;gkab929. doi: 10.1093/nar/gkab929.

Control and elimination of lymphatic filariasis in Oceania: Prevalence, geographical distribution, mass drug administration, and surveillance in Samoa, 1998-2017

Lymphatic filariasis (LF) is a major public health problem globally and in the Pacific Region. The Global Programme to Eliminate LF has made great progress but LF is persistent and resurgent in some Pacific countries and territories. Samoa remains endemic for LF despite elimination efforts through multiple two-drug mass drug administrations (MDA) since 1965, including renewed elimination efforts started in 1999 under the Pacific Programme for Elimination of LF (PacELF). Despite eight rounds of national and two rounds of subnational MDA under PacELF, Samoa failed transmission assessment surveys (TAS) in all three evaluation units in 2017. In 2018, Samoa was the first to distribute countrywide triple-drug MDA using ivermectin, diethylcarbamazine (DEC), and albendazole. This paper provides a review of MDAs and historical survey results from 1998 to 2017 in Samoa and highlights lessons learnt from LF elimination efforts, including challenges and potential ways to overcome them to successfully achieve elimination.

Patricia M Graves, Hayley Joseph, Shaun P Coutts, Helen J Mayfield, Fuatai Maiava, Tile Ann Ah Leong-Lui, Palanitina Tupuimatagi Toelupe, Vailolo Toeaso Iosia, Siatua Loau, Paulo Pemita, Take Naseri, Robert Thomsen, Alvaro Berg Soto, Thomas R Burkot, Peter Wood, Wayne Melrose, Padmasiri Aratchige, Corinne Capuano, Sung Hye Kim, Masayo Ozaki, Aya Yajima, Patrick J Lammie, Eric Ottesen, Lepaitai Hansell, Rasul Baghirov, Colleen L Lau, Kazuyo Ichimori. Adv Parasitol. 2021;114:27-73. doi: 10.1016/bs.apar.2021.03.002

Researchers implement new tool to screen drugs for treating malaria relapses

Steve Maher
Steve Maher, assistant research scientist in the Center for Tropical Emerging and Global Diseases, leads a team of researchers who have implemented a new screening tool to determine if a drug candidate kills hypnozoites, the cause of malaria relapses. (Photo by Donna Huber)

Globally, efforts to control malaria caused by Plasmodium vivax are lagging behind that of other species of Plasmodium due to its unique biology. A team of researchers at the University of Georgia, the Institute Pasteur of Cambodia, and Shoklo Malaria Research Unit in Thailand detail a new screening tool and report for the first time a method capable of discovering novel experimental drug compounds for use against vivax malaria. Their study was recently published in Scientific Reports.

The parasite species P. vivax is the most widespread cause of malaria. While not as deadly as malaria caused by P. falciparum, it can cause severe disease and has a significant impact on both national economies and personal finances, in part due to this species’ propensity to cause relapses.

Relapses are caused by hypnozoites, a form of the parasite residing in the liver, which can lie dormant for a period of time before causing another symptomatic blood infection. During this period of dormancy, hypnozoites are not susceptible to standard antimalarials, meaning a patient treated for a blood infection is not fully cured.

“With this assay, we can now tell earlier on in the drug discovery process if a compound is going to work against hypnozoites,” said Steven Maher, assistant research scientist at the Center for Tropical and Emerging Global Diseases and lead researcher on the study. “In this study, we were able to identify three new drugs that kill dormant hypnozoites.”

One of the drugs identified looks promising as a possible new treatment, though Maher said it will need more testing. The other two could be useful in studying hypnozoite biology and increase understanding of such things as the mechanisms of dormancy.

The team’s report also shows how two current antimalarial drugs, chloroquine and tafenoquine, synergistically work together to kill hypnozoites. However, these drugs cannot be administered to children and pregnant women (due to their known side effects), nor to people who lack the enzyme called G6PD. Up to 20% of the population in southeast Asia are G6PD deficient.

“The current drug therapies work well to treat the symptomatic blood stage of vivax malaria,” said Steven Maher. “However, in vivax malaria we need to eliminate hypnozoites to fully cure the patient, and for that we need new therapies.”

To compound the problem, typical mouse models used in malaria drug research can’t determine if the experimental compounds work against hypnozoites because the Plasmodium species that infects mice doesn’t produce them. Additionally, because the assays used as the first step in discovering potential new drug compounds focus on the blood stage of the parasite, researchers need a different kind of assay that will allow them to test these compounds on hypnozoites, which requires a stable culture of liver cells.

“It’s a challenge because you have to get samples from where the vivax malaria is endemic,” said Maher. “Liver cells don’t stay viable in culture for long, and these assays take eight days to show results. The assay itself is difficult to run, but we have a great team of researchers in Cambodia and Thailand that has really helped to make this possible.”

The team is continuing to build better tools to overcome the challenges drug discovery in P. vivax faces as they begin to test these drugs in animal models.


This story first appeared at UGA Research.




Application of SARS-CoV-2 serology to address public health priorities

Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical.
Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples.
Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se=89%, Sp=99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R2 = 0.26).
Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.

Amy C. Sherman, Teresa Smith, Yerun Zhu, Kaitlin Taibl, Jessica Howard-Anderson, Taylor Landay, Nora Pisanic, Jennifer Kleinhenz, Trevor W. Simon, Daniel Espinoza, Skyler Hammond, Nadine Rouphael, Huifeng Shen, Jessica K. Fairley, Jaime A. Cardona-Ospina, Alfonso J. Rodriguez-Morales, Lakshmanane Premkumar, Jens Wrammert, Rick Tarleton, Scott Fridkin, Christopher D. Heaney, Erin M. Scherer and Matthew H. Collins. Frontiers in Public Health, Oct. 2021, doi: 10.3389/fpubh.2021.744535

Outhouses, clean water key to fighting schistosomiasis in persistent hotspots

Dan Colley
Dan Colley, professor emeritus of microbiology and former director of the Center for Tropical and Emerging Global Diseases, devoted much of his career to studying schistosomiasis, a disease caused by waterborne parasites that is endemic in several African nations. (photo credit: Andrew Tucker)

Schistosomiasis, caused by several species of the parasitic worm Schistosoma, is a disease of poverty. The debilitating illness keeps people in a cycle of poverty due to missed educational and employment opportunities. In children, repeated infections often lead to anemia, malnutrition and learning disabilities. While there are no current preventive drug therapies or vaccines, annual mass drug administration (MDA) is often used to treat all elementary school children in countries where Schistosoma species are endemic.

“Treating with praziquantel through MDA programs is really successful in reducing schistosomiasis,” said Dan Colley, professor emeritus in the Franklin College of Arts and Sciences’ Department of Microbiology and former director of the Center for Tropical and Emerging Global Diseases. “However, in our studies we were seeing a few villages that didn’t really respond to annual MDA with lower numbers of infections. And it wasn’t just a few villages—in any given group of 25 study villages, we saw what we’re calling ‘persistent hotspots.’”

Through the work of the Schistosomiasis Consortium for Operational Research and Evaluation, researchers discovered that persistent hotspots (PHS) occurred in study sites in Cote d’Ivoire, Mozambique, Tanzania, Zanzibar and Kenya.

Schistosoma parasites develop in certain species of freshwater snails and are shed into the water where the form of the parasite that infects people can survive up to 24 hours. When an individual comes to the water to bathe, wash clothes, work or play, the parasites invade through the skin.

Several weeks after infection, the worms mature and begin to produce eggs that travel to the person’s bladder or intestines, where they are expelled through urine or stool. When freshwater sources are contaminated with human urine or fecal matter that contain these eggs, the life cycle begins again when the parasite eggs hatch and infect appropriate freshwater snails.

In a recent study published in PLOS ONE, Colley and his colleagues at the University of Georgia, Kenya Medical Research Institute (KEMRI), and Kenya’s Ministry of Health found high use of surface water and low use of latrines were factors associated with being a PHS and likely contributed to persistent levels of Schistosoma infection in these PHS villages—even in the face of annual MDA.

High use of surface water and low use of latrine were found to be contributing factors to persistence levels of Schistosoma infection in a new study published in PLOS ONE. Left: Locals washing clothes at Kisian Beach, Lake Victoria. Right: Dan Colley at a site where sand harvesters work.

The study in western Kenya included both villages responding well to MDA (with a declining level of schistosomiasis) and those that are considered persistent hotspots. All the villages have fewer than 2,000 people, and most range between 500 and 1,500 residents. They often contain a crossroads that serves as the town center with a few shops. While the town center and the nearby houses have electricity, homes farther out might not. Villages considered PHS were located closer to open water sources, and more residents were employed in water-based jobs such as car washing and sand harvesting.

It was also found that these PHS villages had fewer latrines than villages that responded well to MDA, which likely led to more human fecal matter washing into the surface waters. The researchers believe that for these PHS villages, increasing latrine availability and use would reduce Schistosoma prevalence. However, it isn’t just a case of “if you build it, they will come.”

There are several barriers that would need to be overcome. Latrines, commonly called outhouses, are often smelly and attract flies and rats, which then attract snakes. In addition to issues of maintenance, there are social and educational components that need to be considered to change practices. But even when the people are willing, increased latrine use doesn’t always work.

Residents of “persistent hot spot” villages in Africa are more likely to be employed in a water-based occupation, such as car washing, than those in villages with lower rates of schistosomiasis. As the parasites that cause the disease must pass through certain species of freshwater snails before infecting humans, better latrine use in these villages may reduce transmission. (Photo courtesy of Dan Colley)

Colley recounts the story of a group of car washers he and other colleagues at KEMRI and the Centers for Disease Control and Prevention worked with for over two decades. These men are well-versed on Schistosoma, and they decided to build a latrine.

“They knew the life cycle as well as we did, maybe better,” recalls Colley.

The car washers even made it an entrepreneurial pursuit by selling toilet paper for a shilling. However, when the rainy season came, the latrine was flooded, and all that waste was washed into the nearby lake where they worked daily.

This story illustrates just one of the challenges public health officials face in trying to incorporate wells and latrines into national programs to eliminate schistosomiasis. Studies like the one by Colley and his colleagues demonstrate the need to look beyond drug treatment when pushing to move from control to elimination of schistosomiasis.

“We can keep doing MDA, which is helpful, but eventually the worms may become drug resistant,” said Colley. “But with persistent hotspots now being found in everyone’s studies, we know we need to do better. That means we need to advocate for access to clean water sources, sanitation and perhaps ultimately vaccines, as well.”

Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.

Steven P. Maher, Amélie Vantaux, Victor Chaumeau, Adeline C. Y. Chua, Caitlin A. Cooper, Chiara Andolina, Julie Péneau, Mélanie Rouillier, Zaira Rizopoulos, Sivchheng Phal, Eakpor Piv, Chantrea Vong, Sreyvouch Phen, Chansophea Chhin, Baura Tat, Sivkeng Ouk, Bros Doeurk, Saorin Kim, Sangrawee Suriyakan, Praphan Kittiphanakun, Nana Akua Awuku, Amy J. Conway, Rays H. Y. Jiang, Bruce Russell, Pablo Bifani, Brice Campo, François Nosten, Benoît Witkowski & Dennis E. Kyle. Sci Rep 11, 19905 (2021).

A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii

Two-pore channels (TPCs) are a ubiquitous family of cation channels that localize to acidic organelles in animals and plants to regulate numerous Ca2+-dependent events. Little is known about TPCs in unicellular organisms despite their ancient origins. Here, we characterize a TPC from Toxoplasma gondii, the causative agent of toxoplasmosis. TgTPC is a member of a novel clad of TPCs in Apicomplexa, distinct from previously identified TPCs and only present in coccidians. We show that TgTPC localizes not to acidic organelles but to the apicoplast, a non-photosynthetic plastid found in most apicomplexan parasites. Conditional silencing of TgTPC resulted in progressive loss of apicoplast integrity, severely affecting growth and the lytic cycle. Isolation of TPC null mutants revealed a selective role for TPCs in replication independent of apicoplast loss that required conserved residues within the pore-lining region. Using a genetically-encoded Ca2+ indicator targeted to the apicoplast, we show that Ca2+ signals deriving from the ER but not from the extracellular space are selectively transmitted to the lumen. Deletion of the TgTPC gene caused reduced apicoplast Ca2+ uptake and membrane contact site formation between the apicoplast and the ER. Fundamental roles for TPCs in maintaining organelle integrity, inter-organelle communication and growth emerge.

Zhu-Hong Li, Thayer P King, Lawrence Ayong, Beejan Asady, Xinjiang Cai, Taufiq Rahman, Stephen A Vella, Isabelle Coppens, Sandip Patel, Silvia N J Moreno. Nat Commun. 2021 Oct 4;12(1):5802. doi: 10.1038/s41467-021-25987-5

Drug Target Validation of the Protein Kinase AEK1, Essential for Proliferation, Host Cell Invasion, and Intracellular Replication of the Human Pathogen Trypanosoma cruzi

Protein phosphorylation is involved in several key biological roles in the complex life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease, and protein kinases are potential drug targets. Here, we report that the AGC essential kinase 1 (TcAEK1) exhibits a cytosolic localization and a higher level of expression in the replicative stages of the parasite. A CRISPR/Cas9 editing technique was used to generate ATP analog-sensitive TcAEK1 gatekeeper residue mutants that were selectively and acutely inhibited by bumped kinase inhibitors (BKIs). Analysis of a single allele deletion cell line (TcAEK1-SKO), and gatekeeper mutants upon treatment with inhibitor, showed that epimastigote forms exhibited a severe defect in cytokinesis. Moreover, we also demonstrated that TcAEK1 is essential for epimastigote proliferation, trypomastigote host cell invasion, and amastigote replication. We suggest that TcAEK1 is a pleiotropic player involved in cytokinesis regulation in T. cruzi and thus validate TcAEK1 as a drug target for further exploration. The gene editing strategy we applied to construct the ATP analog-sensitive enzyme could be appropriate for the study of other proteins of the T. cruzi kinome. IMPORTANCE Chagas disease affects 6 to 7 million people in the Americas, and its treatment has been limited to drugs with relatively high toxicity and low efficacy in the chronic phase of the infection. New validated targets are needed to combat this disease. In this work, we report the chemical and genetic validation of the protein kinase AEK1, which is essential for cytokinesis and infectivity, using a novel gene editing strategy.

Miguel A Chiurillo, Bryan C Jensen, Roberto Docampo. Microbiol Spectr. 2021 Sep 29;e0073821. doi: 10.1128/Spectrum.00738-21.