A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria
We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.
Z Chahine, S Abel, T Hollin, G L Barnes, J H Chung, M E Daub, I Renard, J Y Choi, P Vydyam, A Pal, M Alba-Argomaniz, C A S Banks, J Kirkwood, A Saraf, I Camino, P Castaneda, M C Cuevas, J De Mercado-Arnanz, E Fernandez-Alvaro, A Garcia-Perez, N Ibarz, S Viera-Morilla, J Prudhomme, C J Joyner, A K Bei, L Florens, C Ben Mamoun, C D Vanderwal, K G Le Roch. Science. 2024 Sep 27;385(6716):eadm7966. doi: 10.1126/science.adm7966.