Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5–8 through intermediate clusters 2–4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.
Meixue Duan, Doan C Nguyen, Chester J Joyner, Celia L Saney, Christopher M Tipton, Joel Andrews, Sagar Lonial, Caroline Kim, Ian Hentenaar, Astrid Kosters, Eliver Ghosn, Annette Jackson, Stuart Knechtle, Stalinraja Maruthamuthu, Sindhu Chandran, Tom Martin, Raja Rajalingam, Flavio Vincenti, Cynthia Breeden, Ignacio Sanz, Greg Gibson, F Eun-Hyung Lee. Cell Rep. 2023 Jun 23;42(7):112682. doi: 10.1016/j.celrep.2023.112682