Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Phloroglucinols from the Roots of Garcinia dauphinensis and Their Antiproliferative and Antiplasmodial Activities

Graphica abstract

Abstract

Garcinia dauphinensis is a previously uninvestigated endemic plant species of Madagascar. The new phloroglucinols dauphinols A–F and 3′-methylhyperjovoinol B (17) and six known phloroglucinols (813) together with tocotrienol 14 and the three triterpenoids 1517 were isolated from an ethanolic extract of G. dauphinensis roots using various chromatographic techniques. The structures of the isolated compounds were elucidated by NMR, MS, optical rotation, and ECD data. Theoretical ECD spectra and specific rotations for 2 were calculated and compared to experimental data in order to assign its absolute configuration. Among the compounds tested, 1showed the most promising growth inhibitory activity against A2870 ovarian cancer cells, with IC50= 4.5 ± 0.9 μM, while 2 had good antiplasmodial activity against the Dd2 drug-resistant strain of Plasmodium falciparum, with IC50 = 0.8 ± 0.1 μM.

Rolly G. Fuentes, Kirk C. Pearce, Yongle Du, Andriamalala Rakotondrafara, Ana L. Valenciano, Maria B. Cassera, Vincent E. Rasamison, T. Daniel Crawford, and David G. I. Kingston. 2018. Journal of Natural Products.
DOI: 10.1021/acs.jnatprod.8b00379

A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages

Abstract

Background:Plasmodium vivax is the most geographically widespread of the human malaria parasites, causing 50,000 to 100,000 deaths annually. Plasmodium vivax parasites have the unique feature of forming dormant liver stages (hypnozoites) that can reactivate weeks or months after a parasite-infected mosquito bite, leading to new symptomatic blood stage infections. Efforts to eliminate P. vivax malaria likely will need to target the persistent hypnozoites in the liver. Therefore, research on P. vivax liver stages necessitates a marker for clearly distinguishing between actively replicating parasites and dormant hypnozoites. Hypnozoites possess a densely fluorescent prominence in the parasitophorous vacuole membrane (PVM) when stained with antibodies against the PVM-resident protein Upregulated in Infectious Sporozoites 4 (PvUIS4), resulting in a key feature recognizable for quantification of hypnozoites. Thus, PvUIS4 staining, in combination with the characteristic small size of the parasite, is currently the only hypnozoite-specific morphological marker available.

Results: Here, the generation and validation of a recombinant monoclonal antibody against PvUIS4 (α-rUIS4 mAb) is described. The variable heavy and light chain domains of an α-PvUIS4 hybridoma were cloned into murine IgG1 and IgK expression vectors. These expression plasmids were co-transfected into HEK293 cells and mature IgG was purified from culture supernatants. It is shown that the α-rUIS4 mAb binds to its target with high affinity. It reliably stains the schizont PVM and the hypnozoite-specific PVM prominence, enabling the visual differentiation of hypnozoites from replicating liver stages by immunofluorescence assays in different in vitro settings, as well as in liver sections from P. vivax infected liver-chimeric mice. The antibody functions reliably against all four parasite isolates tested and will be an important tool in the identification of the elusive hypnozoite.

Conclusions: The α-rUIS4 mAb is a versatile tool for distinguishing replicating P. vivax liver stages from dormant hypnozoites, making it a valuable resource that can be deployed throughout laboratories worldwide.

Carola Schafer, Nicholas Dambrauskas, Ryan W. Steel, Sara Carbonetti, Vorada Chuenchob, Erika L. Flannery, Vladimir Vigdorovich, Brian G. Oliver, Wanlapa Roobsoong, Steven P. Maher, Dennis Kyle, Jetsumon Sattabongkot, Stefan H. I. Kappe, Sebastian A. Mikolajczak and D. Noah Sather. 2018. Malaria Journal; 17:370. https://doi.org/10.1186/s12936-018-2519-7

Plasmodium falciparum cGMP-dependent protein kinase interacts with a subunit of the parasite proteasome

ABSTRACT

Malaria is caused by the protozoan parasite Plasmodium, which undergoes a complex life cycle in a human host and a mosquito vector. The parasite’s cyclic GMP (cGMP)-dependent protein kinase (PKG) is essential at multiple steps of the life cycle. Phosphoproteomic studies in Plasmodium falciparum erythrocytic stages and Plasmodium berghei ookinetes have identified proteolysis as a major biological pathway dependent on PKG activity. To further understand PKG’s mechanism of action, we screened a yeast two-hybrid library for P. falciparum proteins that interact with P. falciparum PKG (PfPKG) and tested peptide libraries to identify its phosphorylation site preferences. Our data suggest that PfPKG has a distinct phosphorylation site and that PfPKG directly phosphorylates parasite RPT1, one of six AAA+ ATPases present in the 19S regulatory particle of the proteasome. PfPKG and RPT1 interact in vitro, and the interacting fragment of RPT1 carries a PfPKG consensus phosphorylation site; a peptide carrying this consensus site competes with the RPT1 fragment for binding to PfPKG and is efficiently phosphorylated by PfPKG. These data suggest that PfPKG’s phosphorylation of RPT1 could contribute to its regulation of parasite proteolysis. We demonstrate that proteolysis plays an important role in a biological process known to require Plasmodium PKG: invasion by sporozoites of hepatocytes. A small-molecule inhibitor of proteasomal activity blocks sporozoite invasion in an additive manner when combined with a Plasmodium PKG-specific inhibitor. Mining the previously described parasite PKG-dependent phosphoproteomes using the consensus phosphorylation motif identified additional proteins that are likely to be direct substrates of the enzyme.

K. Govindasamy, R. Khan, M. Snyder, H. J. Lou, P. Du, H. M. Kudyba, V. Muralidharan, B. E. Turk, P. Bhanot. 2018. Infection and Immunity. https://doi.org/10.1128/IAI.00523-18

5-Diphosphoinositol Pentakisphosphate (5-IP7) Regulates Phosphate Release from Acidocalcisomes and Yeast Vacuoles

Abstract

Acidocalcisomes of Trypanosoma brucei and the acidocalcisome-like vacuoles of Saccharomyces cerevisiae are acidic calcium compartments that store polyphosphate (polyP). Both organelles possess a phosphate sodium symporter (TbPho91, and Pho91p, in T. brucei and yeast, respectively), but the roles of these transporters in growth and orthophosphate (Pi) transport are unclear. We found here that Tbpho91-/- trypanosomes have a lower growth rate under phosphate starvation, and contain larger acidocalcisomes that have increased Pi content. Heterologous expression of TbPHO91 in Xenopus oocytes followed by two-electrode voltage clamp recordings disclosed that myo-inositol polyphosphates stimulate both sodium-dependent depolarization of the oocyte membrane potential and Pi conductance. Deletion of the SPX domain in TbPho91 abolished this stimulation. Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate generated outward currents in Na+/Pi -loaded giant vacuoles prepared from wild type or from TbPHO91-expressing pho91Δ strains but not from the pho91Δ strains, or from the pho91Δ strains expressing PHO91 or TbPHO91 with mutated SPX domains. Our results indicate that TbPho91 and Pho91p are responsible for vacuolar Pi and Na+ efflux and that myo-inositol polyphosphates stimulate the Na+/Pi symporter activities through their SPX domains.

Evgeniy Potapenko, Ciro D Cordeiro, Guozhong Huang, Melissa Storey, Christopher Wittwer, Amit K Dutta, Henning J. Jessen, Vincent J. Starai and Roberto Docampo. 2018. Journal of Biological Chemistry; 293:19101-19112.
doi: 10.1074/jbc.RA118.005884

Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation

graphical abstract

Abstract

Discovery of new chemotherapeutic lead agents can be accelerated by optimizing chemotypes proven to be effective in other diseases to act against parasites. One such medicinal chemistry campaign has focused on optimizing the anilinoquinazoline drug lapatinib (1) and the alkynyl thieno[3,2-d]pyrimidine hit GW837016X (NEU-391, 3) into leads for antitrypanosome drugs. We now report the structure–activity relationship studies of 3 and its analogs against Trypanosoma brucei, which causes human African trypanosomiasis (HAT). The series was also tested against Trypanosoma cruziLeishmania major, and Plasmodium falciparum. In each case, potent antiparasitic hits with acceptable toxicity margins over mammalian HepG2 and NIH3T3 cell lines were identified. In a mouse model of HAT, 3 extended life of treated mice by 50%, compared to untreated controls. At the cellular level, 3 inhibited mitosis and cytokinesis in T. brucei. Thus, the alkynylthieno[3,2-d]pyrimidine chemotype is an advanced hit worthy of further optimization as a potential chemotherapeutic agent for HAT.

Jennifer L. Woodring, Ranjan Behera, Amrita Sharma, Justin Wiedeman, Gautam Patel, Baljinder Singh, Paul Guyett, Emanuele Amata, Jessey Erath, Norma Roncal, Erica Penn, Susan E. Leed, Ana Rodriguez, Richard J. Sciotti, Kojo Mensa-Wilmot, and Michael P. Pollastri. 2018. ACS Med. Chem. Lett.; 9(10):996-1001. DOI: 10.1021/acsmedchemlett.8b00245

Rearranged T Cell Receptor Sequences in the Germline Genome of Channel Catfish Are Preferentially Expressed in Response to Infection

Rearranged V(D)J genes coding for T cell receptor α and β chains are integrated into the germline genome of channel catfish. Previous analysis of expressed TCR Vβ2 repertoires demonstrated that channel catfish express multiple public clonotypes, which were shared among all the fish, following infection with a common protozoan parasite. In each case a single DNA sequence was predominately used to code for a public clonotype. We show here that the rearranged VDJ genes coding for these expressed public Vβ2 clonotypes can be amplified by PCR from germline DNA isolated from oocytes and erythrocytes. Sequencing of the Vβ2 PCR products confirmed that these expressed public Vβ2 clonotypes are integrated into the germline. Moreover, sequencing of PCR products confirmed that all five Vβ gene families and Vα1 have rearranged V(D)J genes with diverse CDR3 sequences integrated into the germline. Germline rearranged Vβ2 and Vβ4 genes retain the intron between the leader and Vβ sequence. This suggests that the germline rearranged TCR Vβ genes arose through VDJ rearrangement in T cells, and subsequently moved into the germline through DNA transposon mediated transposition. These results reveal a new dimension to the adaptive immune system of vertebrates, namely: the expression of evolutionarily conserved, rearranged V(D)J genes from the germline.

Robert Craig Findly, Frank D. Niagro, Ryan P. Sweeney, Alvin C. Camus and Harry W. Dickerson. 2018. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.02117

Recognition and killing of Brugia malayi microfilariae by human immune cells is dependent on the parasite sample and is not altered by ivermectin treatment

graphical abstract

Abstract

Mass administration of macrocyclic lactones targets the transmission of the causative agents of lymphatic filariasis to their insect vectors by rapidly clearing microfilariae (Mf) from the circulation. It has been proposed that the anti-filarial action of these drugs may be mediated through the host immune system. We recently developed an in vitro assay for monitoring the attachment to and killing of B. malayi Mf by human neutrophils (PMNs) and monocytes (PBMCs), however, the levels of both cell to worm attachment and leukocyte mediated Mf killing varied greatly between individual experiments. To determine whether differences in an individual’s immune cells or the Mf themselves might account for the variability in survival, PMNs and PBMCs were isolated from 12 donors every week for 4 weeks and the cells used for survival assays with a different batch of Mf, thereby keeping donors constant but varying the Mf sample. Results from these experiments indicate that, overall, killing is Mf-rather than donor-dependent. To assess whether ivermectin (IVM) or diethylcarbamazine (DEC) increase killing, Mf were incubated either alone or with immune cells in the presence of IVM or DEC. Neither drug induced a significant difference in the survival of Mf whether cultured with or without cells, with the exception of DEC at 2 h post incubation. In addition, human PBMCs and PMNs were incubated with IVM or DEC for 1 h or 16 h prior to RNA extraction and Illumina sequencing. Although donor-to-donor variation may mask subtle differences in gene expression, principle component analysis of the RNASeq data indicates that there is no significant change in the expression of any genes from the treated cells versus controls. Together these data suggest that IVM and DEC have little direct effect on immune cells involved in the rapid clearance of Mf from the circulation.

Barbara J. Reaves, Connor Wallis, Ciaran J.McCoy, W. Walter Lorenz, Balazs Rada, Adrian J.Wolstenholme. 2018. International Journal for Parasitology: Drugs and Drug Resistance; 6(3): 587-595.

Inorganic Polyphosphate Interacts with Nucleolar and Glycosomal Proteins in Trypanosomatids

Summary

Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high‐energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over‐representation of nucleolar and glycosomal proteins. Using the polyphosphate‐binding domain (PPBD) of Escherichia coliexopolyphosphatase (PPX), we localized long‐chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre‐incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration‐dependent and chain length‐dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.

Raquel S. Negreiros, Noelia Lander, Guozhong Huang, Ciro D. Cordeiro, Stephanie A. Smith, James H. Morrissey, Roberto Docampo. 2018. Molecular Microbiology; 110(6):973-994. https://doi.org/10.1111/mmi.14131

Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of Trypanosoma cruzi

Abstract

In vertebrate cells, mitochondrial Ca2+ uptake by the mitochondrial calcium uniporter (MCU) leads to Ca2+-mediated stimulation of an intramitochondrial pyruvate dehydrogenase phosphatase (PDP). This enzyme dephosphorylates serine residues in the E1α subunit of pyruvate dehydrogenase (PDH), thereby activating PDH and resulting in increased ATP production. Although a phosphorylation–dephosphorylation cycle for the E1α subunit of PDH from non-vertebrate organisms has been described, the Ca2+-mediated PDP activation has not been studied. In this work we investigated the Ca2+ sensitivity of two recombinant PDPs from the protozoan human parasites Trypanosoma cruzi (TcPDP) and Trypanosoma brucei (TbPDP) and generated a TcPDP-KO cell line to establish TcPDP’s role in cell bioenergetics and survival. Moreover, the mitochondrial localization of the TcPDP was studied by CRISPR/Cas9-mediated endogenous tagging. Our results indicate that TcPDP and TbPDP both are Ca2+-sensitive phosphatases. Of note, TcPDP-KO epimastigotes exhibited increased levels of phosphorylated TcPDH, slower growth and lower oxygen consumption rates than control cells, an increased AMP:ATP ratio and autophagy under starvation conditions, and reduced differentiation into infective metacyclic forms. Furthermore, TcPDP-KO trypomastigotes were impaired in infecting culture host cells. We conclude that TcPDP is a Ca2+-stimulated mitochondrial phosphatase that dephosphorylates TcPDH and is required for normal growth, differentiation, infectivity and energy metabolism in T. cruzi.  Our results support the view that one of the main roles of the MCU is linked to the regulation of intramitochondrial dehydrogenases.

Noelia Lander, Miguel A. Chiurillo, Mayara S. Bertolini, Melissa Storey, Anibal E. Vercesi and Roberto Docampo. 2018. Journal of Biological Chemistry; 293(45):17402-17417. doi: 10.1074/jbc.RA118.004498

The Mitochondrial Ca2+ Uniporter Complex (MCUC) of Trypanosoma brucei Is a Hetero-oligomer That Contains Novel Subunits Essential for Ca2+ Uptake

ABSTRACT

The mitochondrial calcium uniporter complex (MCUC) is a highly selective channel that conducts calcium ions across the organelle inner membrane. We previously characterized Trypanosoma brucei’s MCU (TbMCU) as an essential component of the MCUC required for parasite viability and infectivity. In this study, we characterize its paralog T. brucei MCUb (TbMCUb) and report the identification of two novel components of the complex that we named TbMCUc and TbMCUd. These new MCUC proteins are unique and conserved only in trypanosomatids. In situ tagging and immunofluorescence microscopy revealed that they colocalize with TbMCU and TbMCUb to the mitochondria of T. brucei. Blue Native PAGE and immunodetection analyses indicated that the MCUC proteins exist in a large protein complex with a molecular weight of approximately 380 kDa. RNA interference (RNAi) or overexpression of the TbMCUc and TbMCUd genes significantly reduced or enhanced mitochondrial Ca2+uptake in T. brucei, respectively, without affecting the mitochondrial membrane potential, indicating that they are essential components of the MCUC of this parasite. The specific interactions of TbMCU with TbMCUb, TbMCUc, or TbMCUd were confirmed by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Furthermore, combining mutagenesis analysis with MYTH assays revealed that transmembrane helices (TMHs) were determinant of the interactions between TbMCUC subunits. In summary, our study has identified two novel essential components of the MCUC of T. brucei and defined their direct physical interactions with the other subunits that result in a hetero-oligomeric MCUC.

Guozhong Huang, Roberto Docampo. 2018. Molecular Biology and Physiology. DOI: 10.1128/mBio.01700-18