Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: vectors

Stable colonization of the model kissing bug Rhodnius prolixus by Trypanosoma cruzi Y strain

The Y strain of Trypanosoma cruzi stably infects the vector Rhodnius prolixus.

Trypanosoma cruzi is a single-celled eukaryotic parasite responsible for Chagas disease, a major cause of morbidity and mortality in Central and South America. While the host-pathogen interactions of T. cruzi have been extensively studied in vertebrate models, investigations into its interactions within its insect host remain limited. To address this gap and establish a genetically tractable system for studying parasite-vector dynamics, we conducted quantitative kinetic infection studies using the Y strain of T. cruzi and the model vector Rhodnius prolixus. We began by comparing parasite infection kinetics from two genetically diverse strains of T. cruzi, Brazil and Y, and demonstrated that ingested parasites from both strains transiently expand in the anterior regions of the insect digestive tract with stable colonization occurring in the hindgut over the long term. Notably, we demonstrated that the clonal Y strain, contrary to previous reports, can effectively infect and persist across multiple developmental stages of R. prolixus. Additionally, comparison of movement of parasites versus inert fluorescent microspheres introduced into artificial blood meals suggests that T. cruzi colonization of the R. prolixus gut occurs passively through peristaltic movement during digestion, rather than through active parasite-mediated chemotaxis. These findings highlight the T. cruzi Y strain – R. prolixus model system as a promising tool for the in-depth molecular characterization of parasite-vector interactions, potentially offering new insights into the biology of this neglected and deadly human pathogen.

Ruby E Harrison, Kevin J Vogel, Ronald Drew Etheridge. PLoS Negl Trop Dis. 2025 Mar 12;19(3):e0012906. doi: 10.1371/journal.pntd.0012906.

An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen

Insects often harbor heritable symbionts that provide defense against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their anti-fungal and anti-parasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titers were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.

C H V Higashi, W L Nichols, G Chevignon, V Patel, S E Allison, K L Kim, M R Strand, K M Oliver. Mol Ecol. 2022 Dec 2. doi: 10.1111/mec.16801. Online ahead of print.

Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species

Thrips transmit one of the most devastating plant viruses worldwide–tomato spotted wilt tospovirus (TSWV). Tomato spotted wilt tospovirus is a type species in the genus Orthotospovirus and family Tospoviridae. Although there are more than 7,000 thrips species, only nine thrips species are known to transmit TSWV. In this study, we investigated the molecular factors that could affect thrips ability to transmit TSWV. We assembled transcriptomes of a vector, Frankliniella fusca [Hinds], and a non-vector, Frankliniella tritici [Fitch], and performed qualitative comparisons of contigs associated with virus reception, virus infection, and innate immunity. Annotations of Ffusca and Ftritici contigs revealed slight differences across biological process and molecular functional groups. Comparison of virus cell surface receptors revealed that homologs of integrin were present in both species. However, homologs of another receptor, heperan sulfate, were present in Ffusca alone. Contigs associated with virus replication were identified in both species, but a contig involved in inhibition of virus replication (radical s-adenosylmethionine) was only present in the non-vector, Ftritici. Additionally, some differences in immune signaling pathways were identified between vector and non-vector thrips. Detailed investigations are necessary to functionally characterize these differences between vector and non-vector thrips and assess their relevance in orthotospovirus transmission.

Shrestha A, Champagne DE, Culbreath AK, Abney MR, Srinivasan R (2019) Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. PLoS ONE 14(10): e0223438. https://doi.org/10.1371/journal.pone.0223438