Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: tapeworms

UGA geneticist gets to take risks with new seed grant

By Donna Huber

photo of Tania Rozario standing in front of a purple shrub.
Assistant Professor Tania Rozario has received a seed grant from the Hypothesis Fund to develop a new approach to advance tapeworm research, particularly on the little understood topic of regeneration.

Tania Rozario, assistant professor in the Department of Genetics and member of the Center for Tropical and Emerging Global Diseases, recently received a seed grant from the Hypothesis Fund to develop a new approach toward advancing tapeworm research. Her natural inquisitiveness and willingness to tackle tough questions has led to this moment.

As a child in Malaysia Rozario was fascinated with the world around her. Her interest was fostered by her grandfather who was an amateur botanist and science teacher. After reading about NASA in a kid’s science magazine, she wrote a letter to them. Their willingness to engage with her inspired her to see science as a real career choice.

“I was exposed to science at an early age,” said Rozario. “But what had the biggest impact on my decision to become a scientist was doing undergraduate research.”

By the time she enrolled in graduate school at the University of Virginia, she knew she wanted to study regeneration. She focused on developmental biology and embryology as she needed a strong foundation in these disciplines to pursue her future research. She returned to regeneration during her post-doctoral training in the Newmark laboratory at the Morgridge Institute for Research. It was then that she started her work in tapeworm regeneration.

“I was drawn to the untapped potential in tapeworms to understand basic biological functions,” she said. “Tapeworms have a complex lifecycle and are difficult to study in the lab – so there’s a challenge there too.”

The mechanisms of regeneration are poorly understood in tapeworms. Stem cells are responsible for regeneration. The Rozario lab wants to know what is special about the stem cells and signals in the “neck” as this tissue is the only tissue capable of regenerating new segments, despite the fact that there are stem cells everywhere in the tapeworm body.

micrograph of rate tapeworm
Rozario’s work is shedding light on tapeworm biology and the broader understanding of stem cells in other organisms. Here, a distribution of cycling stem cells (multicolored) is shown within the regeneration-competent tapeworm neck. (Photo courtesy of Tania Rozario)

“Tapeworms can grow very large, but regeneration only happens from a tiny part,” explained Rozario. “We want to know what genes are controlling it but right now we don’t have sufficient tools.”

With the gene-editing tool CRISPR/Cas, researchers have been making remarkable strides in understanding genes in many organisms. However, there is no evidence that transgenesis, the process in which genes are inserted into an organism, works in tapeworms.

This is where the seed grant from the Hypothesis Fund comes in.

“They have scouts who are looking for unconventional science – research where although there may be risk or uncertainty that it will work, it could have a transformational effect if it does,” said Rozario.

The Hypothesis Fund provides seed grants for bold ideas at the earliest stage of research, often before any preliminary data have been generated.

“There are a number of barriers to getting CRISPR/Cas to work in an organism,” said Rozario in response to the risk of this project.

She lists three things that are needed to successfully use CRISPR/Cas: the right type of organism, access to an early development stage, and the expertise.

“We are in a good position to make this work,” further explained Rozario.

The Rozario lab has successfully developed a number of tools to better study the tapeworm in the lab. Since tapeworms produce both male and female gametes in every segment there is plenty of early development stage material to work with.

“Thanks to this gift, we are able to bring in post-doctoral researcher Olufemi Akinkuotu from the University of Pennsylvania School of Veterinary Medicine,” said Rozario. “He has specific training in developing gene-editing tools in parasitic nematodes, which are distantly related to tapeworms but share many parallel challenges.”

While there is still a risk that CRISPR/Cas won’t work in tapeworms, if it does the payoff could be huge – not only for understanding the basic biology of tapeworms, but to further our understanding of stem cells in other organisms.

This story first appeared at


Trainee Spotlight: Corey Rennolds

Corey Rennolds


My name is Corey Rennolds, and I’ve been a postdoctoral researcher in Tania Rozario’s lab at UGA since August 2022. I’m originally from Cobb County, GA, where I went to grade school, received my B.S. in Biology from Georgia Tech in 2013, and completed my PhD at the University of Maryland, College Park in 2022.

What made you want to study science?
The big bucks, baby!! More honestly, I enjoy learning how things work for its own sake, and I liked the idea of a career spent always learning more about how things in the world work. I started as an undergraduate in engineering but quickly switched to biology when I realized that I was more interested in natural systems than artificial ones (and that I wasn’t very good at calculus). I have other interests of course, but science translates the most smoothly of those into a stable and rewarding way to make a living.

Why did you choose UGA?
I’m originally from the Atlanta area and spent a lot of time in Athens when I was an undergraduate, even though I went to Tech. Now living and working here feels like coming home for me. I finished my PhD and wanted to continue in a research-oriented direction as a postdoc in an academic setting, and UGA is a big, well-funded institution with a strong biology contingent and several faculty in the ballpark of my more narrow expertise. Altogether, it seemed like a good fit.

What is your project/research focus and why did you choose this research focus?
Dr. Rozario learned during her own postdoctoral work that the rat tapeworm Hymenolepis diminuta requires a population of stem cells maintained in the adult worm in order to grow and regenerate, but there was little information on how these cells are activated, how many different varieties there are, their plasticity, and how they differentiate into mature tissue types. Dr. Rozario wanted to hire a postdoc with experience in transcriptomics and regenerative biology in non-model organisms, which is fortunately my background. I thought the project was really interesting with opportunity to do novel work that would stand out. It also gives me the chance to learn a lot of cutting-edge techniques that can be valuable for my research in the long term.

Have you received any awards or honors?
Aside from the T32 postdoctoral fellowship through the CTEGD, I received a few scholarships, fellowships, and other awards during graduate school, including small research grants from Sigma Xi, the Cosmos Club, and Washington Biologists’ Field Club. I would also be remiss not to mention my first-place finish in the most recent CTEGD chili cook-off.

What are your career goals?
I spent most of graduate school as a TA (tip for prospective graduate students: ask your PI about funding!) and so racked up plenty of experience in teaching and discovered that I really enjoy doing it. I want teaching to be a significant part of my career activities going forward, as opposed to just full-time research. Research-wise, though, I am interested in building an independent research program focused on bridging evolutionary-developmental biology with comparative and ecological physiology. To put it simply, I want to study how living things grow, develop, and repair themselves, where and how they get the resources to do these things, and how those processes are affected by environmental factors, including over evolutionary timescales. Working with intestinal parasites is definitely an interesting and challenging context for thinking about these sorts of broad questions.

What is your favorite thing about UGA and Athens?
Athens is close enough to Atlanta to access its amenities but far enough away to be its own ecosystem free of the sprawl. It’s big enough to have a little of everything, including a vibrant and diverse arts scene, but small enough to get to know most of the people in whatever sphere you want to be involved in. The university offers plenty of opportunities for both intellectual stimulation and less-intellectual partying. The traffic isn’t too bad.

Any advice for a student interested in this field?
Don’t settle too much. It is perfectly fine to have standards during your education and assert yourself when called for. You should study what you enjoy, attend school somewhere you want to be, and work with people you get along with. Not everything will be perfect and you should learn when to compromise, of course, but it’s your life and your career. If something isn’t working out, make a change, and be open to alternative paths—if I didn’t take the initiative to change course when I did, I wouldn’t be a biologist now. Think carefully about what is in your best interest personally and professionally in both the short and long term. Also, learn when to identify opportunities to learn something useful or gain valuable experience. In CTEGD, there are a lot of different technical resources, training and professional development opportunities, and diverse faculty expertise; make use of all these things, it’s what they’re there for!


Support trainees like Corey by giving today to the Center for Tropical & Emerging Global Diseases.

The good, the bad, and the ugly: From planarians to parasites

Platyhelminthes can perhaps rightly be described as a phylum of the good, the bad, and the ugly: remarkable free-living worms that colonize land, river, and sea, which are often rife with color and can display extraordinary regenerative ability; parasitic worms like schistosomes that cause devastating disease and suffering; and monstrous tapeworms that are the stuff of nightmares. In this chapter, we will explore how our research expanded beyond free-living planarians to their gruesome parasitic cousins. We start with Schistosoma mansoni, which is not a new model; however, approaching these parasites from a developmental perspective required a reinvention that may hold generalizable lessons to basic biologists interested in pivoting to disease models. We then turn to our (re)establishment of the rat tapeworm Hymenolepis diminuta, a once-favorite model that had been largely forgotten by the molecular biology revolution. Here we tell our stories in three, first-person narratives in order to convey personal views of our experiences. Welcome to the dark side.

Tania Rozario, James J Collins 3rd, Phillip A Newmark. Curr Top Dev Biol. 2022;147:345-373. doi: 10.1016/bs.ctdb.2021.12.015.

UGA’s Rozario receives NIH Director’s New Innovator Award

By Alan Flurry

(Photo courtesy of Tania Rozario)

University of Georgia faculty member Tania Rozario has received a $2 million grant from the National Institutes of Health Director’s New Innovator Award Program, which supports early-career investigators of exceptional creativity who propose high-risk, high-reward research projects.

Rozario is an assistant professor with a joint appointment in the Franklin College of Arts and Sciences Department of Genetics and the Center for Tropical and Emerging Global Diseases.

Among the study of tropical diseases worldwide—and particularly among the parasites that cause disease—worms are a largely neglected disease agent, despite being a source of widespread problems that affect both health and economic output. Even within the study of worms, parasitic flatworms like tapeworms represent an understudied group. However, free-living flatworms like planarians are the focus of significant research because of the organism’s dynamic regenerative capacity, which presents intriguing parallels to their parasitic cousins.

Planarian flatworms cut in two will make two new worms, and cut into 10 pieces will result in 10 worms. They are the Ferrari of regenerators, according to Rozario.

“As part of its normal life cycle, a tapeworm sheds large parts of its body and then regrows this lost tissue,” Rozario said. “It has this natural regenerative-like ability, which is very promising from a basic biology standpoint, to understand how stem cells and regeneration functions in these worms.”

Taking advantage of both extensive past research and the much more sophisticated tools of today, Rozario envisions a melding of developmental biology with parasitology as a new approach to understand the parasite. She is using the rat tapeworm, Hymenolepis diminuta, to re-establish a model organism that had been a favorite model among parasitologists in the early-mid 20th century but was left behind by the molecular biology revolution.

Flatworms have incredible capacity for regeneration, according to Tania Rozario, who studies them as agents of parasitic disease. For example, this rat tapeworm is capable of growing thousands of segments and can regenerate segments following amputation.


“One of the major drivers is trying to understand the diversity of the stem cell milieu in these tapeworms,” Rozario said. “We’ll try to parse out the interaction between the diversity of stem cells present and the local signals that then allow the worms to regenerate and make thousands of segments. These interactions are likely crucial for development of both female and male reproductive structures, which exist in each segment of the animal.”

“Dr. Rozario brings a new and exciting area of research to UGA, and her enthusiasm for her research is phenomenal,” said Nancy Manley, Distinguished Research Professor and department head for genetics. “Her success in getting this prestigious award speaks to her talent and the quality of her science. We are enthusiastic to have her as our newest colleague.”

“I am excited that Dr. Rozario has joined us at UGA,” said Dennis Kyle, GRA Eminent Scholar in antiparasitic drug discovery and director of the Center for Tropical and Emerging Global Diseases. “Her pioneering work is ushering in a new era whereby tapeworms can serve as model organisms. The prestigious NIH Director’s Pioneer Award is evidence of the creative approach she is undertaking to better understand these interesting parasites.”

“It’s important that we study the monsters in our midst so that we can learn from organisms in our environment that have these really out-there, unique physiological capabilities,” Rozario said. “We can learn about how they have evolved strategies to thrive in their specific niche, but they can also teach us something more fundamental about biology that could be broadly applicable.”

microscopy of tapeworms
In these Hymenolepis diminuta tapeworm necks, dividing cells—including stem cells—are depicted through color-marking in the image. (Image courtesy of Tania Rozario)