Survival of Salmonella and Shiga Toxin-producing Escherichia coli and Changes in Indigenous Microbiota During Fermentation of Kombucha Made from Home-brewing Kits

Survival and growth of Salmonella and Shiga toxin-producing Escherichia coli (STEC) in kombucha prepared from four brands of commercially available kombucha kits intended for use by home brewers were investigated. Changes in microbiota responsible for fermentation were also determined. An initial population of Salmonella (6.77 log CFU/mL) decreased to below the detection limit (0.30 log CFU/mL) within 10 d in kombucha prepared from two of the four test brands. Populations of 1.85 and 1.20 log CFU/mL were detected in two brands fermented for 14 d. An initial population of STEC (7.02 log CFU/mL) decreased to <0.30 log CFU/mL in two of the four brands within 14 d; 0.20 and 0.87 log CFU/mL were detected in kombucha prepared from the other two brands. Salmonella and STEC increased in populations within 1 d in three brands of base tea used to prepare kombucha, and were stable throughout 14 d of incubation. Both pathogens steadily declined in base tea prepared from one brand of kombucha kit. Inactivation of the pathogens occurred as the pH of kombuchas decreased, but a clear correlation between rates of inactivation and decrease in pH was not evident when comparing kombuchas prepared from the four kits. Growth and peak populations of mesophilic aerobic microorganisms, yeasts, lactic acid bacteria, and acetic acid bacteria varied, depending on the kombucha kit brand. There was not strong evidence to correlate the behavior of Salmonella and STEC with any of these groups of indigenous microbiota. Results of this study show that the ability of Salmonella and STEC to survive in kombucha and base tea used to prepare kombucha is dependent on inherent differences in commercially available kombucha kits intended for use in home settings. Strict application of hygienic practices with the goal of preventing contamination with Salmonella or STEC is essential for reducing the risk of illness associated the consumption of kombucha.

Sheridan S. Brewer, Courtney A. Lowe, Larry R. Beuchat, Ynes R. Ortega; Survival of Salmonella and Shiga Toxin-producing Escherichia coli and Changes in Indigenous Microbiota During Fermentation of Kombucha Made from Home-brewing Kits. J Food Prot 2021; doi: https://doi.org/10.4315/JFP-20-483