Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: diamondback moth

A Target Site Mutation Associated With Diamide Insecticide Resistance in the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae) is Widespread in South Georgia and Florida Populations

Laboratory colonies of diamondback moth (DBM) larvae were established from larvae collected from four sites in Georgia and Florida where diamide, specifically chlorantraniliprole, insecticide resistance was recently documented. Based on dose-response experiments, these colonies exhibited 109- to 4,298-fold resistance to chlorantraniliprole, compared to a commercially available susceptible control colony. Colonies exhibited 50- to 107-fold resistance to another diamide, cyantraniliprole, based on similar dose-response experiments. All colonies were screened for the presence of four known mutations in the ryanodine receptor (RyR), the target of diamide insecticides, previously associated with resistance in Asian DBM populations. One mutation, G4946E, was identified in colonies from all four field sites, but not the susceptible control colony. Three additional RyR target site mutations, E1338D, Q4594L, and I4790M, were not identified in any of the screened samples. The estimated allele frequency of the G4946E mutation in these colonies ranged from 32 to 90%. These data are consistent with recently reported chlorantraniliprole control failures in Georgia and Florida. It is likely that the G4946E mutation is currently an important contributing factor to chlorantraniliprole resistance in Georgia and Florida DBM populations.

Thomas P ‘Sam’ Dunn, Donald E Champagne, David G Riley, Hugh Smith, John E Bennett. J Econ Entomol. 2021 Nov 26;toab223. doi: 10.1093/jee/toab223

Regional Survey of Diamondback Moth (Lepidoptera: Plutellidae) Response to Maximum Dosages of Insecticides in Georgia and Florida

We conducted maximum dose bioassays of insecticide for the control of diamondback moth (DBM), Plutella xylostella (Linnaeus), in cole crops, from 2016 to 2019 at several commercial locations in Georgia and Florida. The nominal maximum dose was defined as the highest labeled rate of an insecticide at the beginning of the survey in the equivalent of 935 liters/ha dilution. The results indicated low insecticide efficacy for high labeled rates of the following insecticides by common name (Insecticide Resistance Action Committee group number in parentheses). Our 4-yr survey identified very low levels of DBM larval control (<47%) by lambda-cyhalothrin (3), methoxyfenozide (18), pyriproxyfen (7C), novaluron (15), bifenthrin (3), chlorantraniliprole (28), indoxacarb (22A), and methomyl (1A). The best products for DBM control (>74%) listed in decreasing average levels of efficacy were naled (1B), cyclaniliprole (28), tolfenpyrad (21A), emamectin benzoate (6), and cyantraniliprole (28). Intermediate levels of control (61-71%) were obtained with Bacillus thuringiensis subspecies aizawai (11A), Bacillus thuringiensis, subsp. kurstaki, strain ABTS-351 (11A), and spinetoram (5). This rapid bioassay provided the grower with a ranking of insecticide efficacy for the control the DBM population for that farm site. These data allowed growers to make an informed decision on control quickly and plan for resistance management rotations for DBM that season.

David Riley, Hugh Smith, John Bennett, Philip Torrance, Evan Huffman, Alton Sparks, Jr, Charles Gruver, Thomas Dunn, Donald Champagne. J Econ Entomol. 2020 Jun 19;toaa125. doi: 10.1093/jee/toaa125.