Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Christopher West

The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis

Fig 5 Immunofluorescence analysis of PIGJ-3×HA shows its localization both inside and outside the rER.

 

Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.

Julia A Alvarez, Elisabet Gas-Pascual, Sahil Malhi, Juan C Sánchez-Arcila, Ferdinand Ngale Njume, Hanke van der Wel, Yanlin Zhao, Laura García-López, Gabriella Ceron, Jasmine Posada, Scott P Souza, George S Yap, Christopher M West, Kirk D C Jensen. mBio. 2024 Sep 20:e0052724. doi: 10.1128/mbio.00527-24

 

Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation

Figure 8. Immunolocalization of FBXO13-HA3 and FBXO14-HA3.

 

A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to a hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels, suggested the involvement of the SCF in their degradation. The effect was selective, because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.

Msano N Mandalasi, Elisabet Gas-Pascual, Carlos Gustavo Baptista, Bowen Deng, Hanke van der Wel, John A W Kruijtzer, Geert-Jan Boons, Ira J Blader, Christopher M West. J Biol Chem. 2024 Sep 20:107801. doi: 10.1016/j.jbc.2024.107801.

The Toxoplasma oxygen-sensing protein, TgPhyA, is required for resistance to interferon gamma-mediated nutritional immunity in mice

 All FiguresNextPrevious
Fig 1. TgPHYa knockout in type II strain parasites.
Fig 1. TgPHYa knockout in type II strain parasites.

 

As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.

Charlotte Cordonnier, Msano Mandalasi, Jason Gigley, Elizabeth A Wohlfert, Christopher M West, Ira J Blader. PLoS Biol. 2024 Jun 10;22(6):e3002690. doi: 10.1371/journal.pbio.3002690.

The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression

Fig 5. TgFBXL2 localizes to a perinucleolar compartment.
Fig 5. TgFBXL2 localizes to a perinucleolar compartment.

 

Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.

Carlos G Baptista, Sarah Hosking, Elisabet Gas-Pascual, Loic Ciampossine, Steven Abel, Mohamed-Ali Hakimi, Victoria Jeffers, Karine Le Roch, Christopher M West, Ira J Blader. PLoS Pathog. 2024 May 30;20(5):e1012269. doi: 10.1371/journal.ppat.1012269.

Christopher West named 2023 Distinguished Research Professor

Christopher West

Christopher West, head of the Department of Biochemistry and Molecular Biology, a researcher in the Complex Carbohydrate Research Center and a member of CTEGD, belongs to a small group of internationally recognized parasite glycobiologists. His rigorous, transformative research explores cellular processes involving various structures, enzymes and roles of glycans, or sugar chains. His studies have identified fundamental cell-to-cell mechanisms of environmental sensing and signaling in glycobiology. Some of his seminal discoveries involve the biosynthesis and roles of novel glycan molecules in the model organism, Dictyostelium discoideum. One of his crucial contributions to glycobiology has been to describe at molecular resolution that organism’s biochemical response pathway to altered oxygen levels, allowing it to respond to its environment’s available oxygen. Since arriving at UGA, he has translated these findings to an opportunistic human pathogen, Toxoplasma gondii, which can grow and infect cells in low-oxygen environments. His research with collaborators at UGA and internationally has opened a new field of oxygen-sensing in protists, exploring how this environmental factor can control the behavior and virulence of pathogenic parasites.

Spindly is a nucleocytosolic O-fucosyltransferase in Dictyostelium and related proteins are widespread in protists and bacteria

O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants, and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium – a protist that is more related to fungi and metazoa. Immunofluorescence probing with the fucose-specific Aleuria aurantia lectin (AAL) and biochemical cell fractionation combined with western blotting suggested the occurrence of nucleocytoplasmic fucosylation. The absence of reactivity in mutants deleted in spy or gmd (unable to synthesize GDP-Fuc) suggested monofucosylation mediated by Spy. Genetic ablation of the modE locus, previously predicted to encode a GDP-fucose transporter, confirmed its necessity for fucosylation in the secretory pathway but not for the nucleocytoplasmic proteins. Affinity capture of these proteins combined with mass spectrometry confirmed monofucosylation of Ser and Thr residues of several known nucleocytoplasmic proteins. As in Toxoplasma, the Spy OFT was required for optimal proliferation of Dictyostelium under laboratory conditions. These findings support a new phylogenetic analysis of OGT and OFT evolution that indicates their occurrence in the last eukaryotic common ancestor but mostly complementary presence in its eukaryotic descendants with the notable exception that both occur in red algae and plants. Their generally exclusive expression, high degree of conservation and shared monoglycosylation targets suggest overlapping roles in physiological regulation.

Hanke Wel, Ana Maria Garcia, Elisabet Gas-Pascual, Macy M Willis, Hyun W Kim, Giulia Bandini, Maissa Mareme Gaye, Catherine E Costello, John Samuelson, Christopher M West. Glycobiology. 2022 Oct 17;cwac071. doi: 10.1093/glycob/cwac071.

Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium

E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from solitary growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2 -sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA -knockout cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-knockout cells. Although a double-knockout of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a non-heme dioxygenase shown to have physiological O2-dependence, is conserved across protists with its F-box and other domains, and related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in wild-type relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic down-regulation via PhyA and association with Skp1.

Andrew W Boland, Elisabet Gas-Pascual, Braxton L Nottingham, Hanke van der Wel, M Osman Sheikh, Christopher M Schafer, Christopher M West. J Biol Chem. 2022 Aug 3;102305. doi: 10.1016/j.jbc.2022.102305.

The nucleocytosolic O-fucosyltransferase Spindly affects protein expression and virulence in Toxoplasma gondii

Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically-expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins, suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.

Giulia Bandini, Carolina Agop-Nersesian, Hanke van der Wel, Msano Mandalasi , Hyun W Kim, Christopher M West, John Samuelson. J Biol Chem. 2020 Nov 6;jbc.RA120.015883. doi: 10.1074/jbc.RA120.015883.

Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii

In animals, the response to chronic hypoxia is mediated by prolyl-hydroxylases (PHDs) that regulate the levels of hypoxia inducible transcription factor a (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non-HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-Phase Kinase Associated Protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, TgPhyA informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.

Tongri Liu, Martine I Abboud, Rasheduzzaman Chowdhury, Anthony Tumber, Adam P Hardy, Kerstin Lippl, Christopher T Lohans, Elisabete Pires, James Wickens, Michael A McDonough, Christopher M West, Christopher J Schofield. J Biol Chem. 2020 Sep 15;jbc.RA120.013998. doi: 10.1074/jbc.RA120.013998.

Toxoplasma F-box protein 1 is required for daughter cell scaffold function during parasite replication

By binding to the adaptor protein SKP1 and serving as substrate receptors for the Skp1, Cullin, F-box E3 ubiquitin ligase complex, F-box proteins regulate critical cellular processes including cell cycle progression and membrane trafficking. While F-box proteins are conserved throughout eukaryotes and are well studied in yeast, plants, and animals, studies in parasitic protozoa are lagging. We have identified eighteen putative F-box proteins in the Toxoplasmagenome of which four have predicted homologs in Plasmodium. Two of the conserved F-box proteins were demonstrated to be important for Toxoplasma fitness and here we focus on an F-box protein, named TgFBXO1, because it is the most highly expressed by replicative tachyzoites and was also identified in an interactome screen as a Toxoplasma SKP1 binding protein. TgFBXO1 interacts with Toxoplasma SKP1 confirming it as a bona fide F-box protein. In interphase parasites, TgFBXO1 is a component of the Inner Membrane Complex (IMC), which is an organelle that underlies the plasma membrane. Early during replication, TgFBXO1 localizes to the developing daughter cell scaffold, which is the site where the daughter cell IMC and microtubules form and extend from. TgFBXO1 localization to the daughter cell scaffold required centrosome duplication but before kinetochore separation was completed. Daughter cell scaffold localization required TgFBXO1 N-myristoylation and was dependent on the small molecular weight GTPase, TgRab11b. Finally, we demonstrate that TgFBXO1 is required for parasite growth due to its function as a daughter cell scaffold effector. TgFBXO1 is the first F-box protein to be studied in apicomplexan parasites and represents the first protein demonstrated to be important for daughter cell scaffold function.

Carlos Gustavo Baptista, Agnieszka Lis, Bowen Deng, Elisabet Gas-Pascual, Ashley Dittmar, Wade Sigurdson, Christopher M. West, Ira J. Blader. PLoS Pathog. 2019 Jul 26;15(7):e1007946. doi: 10.1371/journal.ppat.1007946.