Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Chet Joyner

A Phenotypic Screen for the Liver Stages of Plasmodium vivax

Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite’s liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype.

Steven P. Maher, Amélie Vantaux, Caitlin A. Cooper, Nathan M. Chasen, Wayne T. Cheng, Chester J. Joyner, Roman Manetsch, Benoît Witkowski, Dennis Kyle. 2021. Bio-Protocol. 11(23): DOI: 10.21769/BioProtoc.4253

UGA researchers developing new models for malaria drug development and testing

Chet Joyner and Dennis Kyle
CTEGD member Chet Joyner and CTEGD director Dennis Kyle receive a grant from the Bill & Melinda Gates Foundation for malaria drug development and testing

Two UGA researchers are working to make it easier to develop effective treatments for malaria, a disease that sickens millions worldwide and kills hundreds of thousands each year.

In tropical climates around the globe, malaria poses a grave risk to already vulnerable populations. In 2019, the World Health Organization estimated that there were 229 million clinical cases of malaria worldwide and 409,000 deaths, usually in children below the age of five.

Currently, developing and testing drugs for malaria requires scientists to work in areas where the disease is prevalent or to work with expensive, hard-to-source equipment.  Chester Joyner, an Assistant Professor in the Center for Vaccines and Immunology, and Dennis Kyle, Professor of Infectious Diseases and Cellular Biology, are working to reduce those barriers to malaria drug testing and development.

Joyner and Kyle aim to establish systems that rely on equipment most researchers can obtain: a petri dish. If successful, Joyner says this new culture system will reduce costs and be distributed more easily to advance drug and vaccine research. The University of Georgia College of Veterinary Medicine received a grant for malaria drug development and testing from the Bill & Melinda Gates Foundation.

Worldwide, there are many malaria-causing parasites that result in varying degrees of illness. Joyner and Kyle’s research focuses on defeating one of the most challenging: Plasmodium vivax. Unlike many other malaria parasites, P. vivax can lie dormant in the livers of its hosts—allowing the infected to travel abroad completely unaware that they’re carrying a potentially deadly passenger.

“Most infections with P. vivax are not due to new infections,” says Joyner. “These infections come from this parasite activating and potentially causing disease and sustaining transmission.”

Malaria disproportionately affects the poorest communities in the world, creating a cycle of disease and poverty that current treatments have improved but been unable to stop. However, treating the dormant forms of P. vivax has been particularly challenging because they can cause more harm than good in at-risk populations like pregnant women and people with certain blood conditions.

“We want researchers to have access to technologies to study P. vivax and develop new approaches to control and eliminate this parasite,” Joyner explains.

 

This article first appeared at https://give.uga.edu/uga-researchers-developing-new-models-for-malaria-drug-development-and-testing/

Acute Plasmodium Infection Promotes Interferon-Gamma-Dependent Resistance to Ebola Virus Infection

During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-γ) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-γ receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-γ and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-γ. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.

Kai J Rogers, Olena Shtanko, Rahul Vijay, Laura N Mallinger, Chester J Joyner, Mary R Galinski, Noah S Butler, Wendy Maury. Cell Rep. 2020 Mar 24;30(12):4041-4051.e4. doi: 10.1016/j.celrep.2020.02.104.