Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Tag: Andrew Moorhead

Current Status of the Diagnosis of Brugia spp. Infections

Filarial nematodes of the genus Brugia include parasites that are significant to both human and veterinary medicine. Accurate diagnosis is essential for managing infections by these parasites and supporting elimination programs. Traditional diagnostic methods, such as microscopy and serology, remain vital, especially in resource-limited settings. However, advancements in molecular diagnostics, including nucleic acid amplification tests, offer enhanced sensitivity and specificity. These techniques are becoming increasingly field-friendly, expanding their applications in diagnostics. By refining existing methods, developing novel biomarkers, and understanding the zoonotic potential of various Brugia species, it is possible to improve control measures and better support elimination efforts.

Christopher C Evans, Nils Pilotte, Andrew R Moorhead. Pathogens. 2024 Aug 23;13(9):714. doi: 10.3390/pathogens13090714.

An Overview of Management Considerations for Mongolian Gerbils (Meriones unguiculatus), Cats (Felis catus), and Dogs (Canis familiaris) as Hosts for Brugia Infection

Lymphatic filariasis is a mosquito-borne parasitic infection affecting an estimated 51.4 million people. Brugia malayi and Brugia pahangi are used in research because common nonprimate research species such as Mongolian gerbils (Meriones unguiculatus), cats (Felis catus), and dogs (Canis familiaris) can maintain the life cycle of these species of filarial nematodes. Although overall care and management of animals infected with Brugia spp. is relatively straightforward, there are some unique challenges and special considerations that must be addressed when managing a research colony infected with these parasites. In this review, we discuss our experience, share insight into biosafety and clinical management, and describe the expected clinical signs associated with Brugia infection in gerbils, cats, and dogs.

Catherine A Chambers, Christopher C Evans, Gianni A Campellone, Mary A McCrackin, Andrew R Moorhead, Leanne C Alworth. Comp Med. 2024 Jun 26. doi: 10.30802/AALAS-CM-24-034.

Evaluation of diagnostic techniques for early detection of heartworm in experimentally infected dogs: identification of Dirofilaria immitis-derived microRNA in the initial 28 weeks post-inoculation

graphical abstract

Background: Dirofilaria immitis, commonly known as heartworm (HW), is a parasitic nematode transmitted by various mosquito species, leading to heartworm disease (HWD) in dogs. Diagnosis of HW typically involves antigen or microfilariae detection, or visualization of adult worms through imaging or post mortem examination. Polymerase chain reaction (PCR) and micro RNA (miRNA) detection have been explored for HW diagnosis.

Methods: Three dogs, previously experimentally infected with HW, underwent blood sampling every 4 weeks for 7 months. Samples were assessed for antigen presence after heat treatment, PCR amplification, and microfilaria examination using Giemsa-stained thick smears. Additionally, whole blood aliquots underwent miRNA deep sequencing and bioinformatic analysis.

Results: Heartworm antigen was detectable after heat treatment at 20 weeks post-inoculation and via PCR at 24 weeks, with microfilariae observed in peripheral blood smears at 28 weeks. However, deep miRNA sequencing revealed that the miRNA candidate sequences are not consistently expressed before 28 weeks of infection.

Conclusions: While ancillary molecular methods such as PCR and miRNA sequencing may be less effective than antigen detection for detecting immature larval stages in an early stage of infection, our experimental findings demonstrate that circulating miRNAs can still be detected in 28 weeks post-infection.

Daniel Felipe Barrantes Murillo, Elyssa J Campbell, Andrew R Moorhead, Chengming Wang. Parasit Vectors. 2024 Jun 13;17(1):258. doi: 10.1186/s13071-024-06337-y.

Effects of doxycycline dose rate and pre-adulticide wait period on heartworm-associated pathology and adult worm mass

graphical abstract

Background: The American Heartworm Society canine guidelines recommend treatment with doxycycline prior to adulticide administration to reduce levels of Wolbachia and its associated metabolites, which are known to be a leading cause of pulmonary pathology. Studies have determined that doxycycline administered at 10 mg/kg BID for 28 days is an effective dose for eliminating Wolbachia, but what has not been determined is the clinical relevance of this elimination. The current guidelines also recommend a 30-day wait period following administration of doxycycline to allow for clearance of metabolites, such as Wolbachia surface protein, and for further reduction in heartworm biomass before administration of adulticide. Reducing the doxycycline dose and eliminating the wait period may carry practical benefits for the animal, client, and practitioner.

Methods: To investigate these treatment practices, Dirofilaria immitis adults were surgically transplanted into each of 45 dogs, which were divided into nine study groups of five dogs each. Seventy-five days after transplantation, two groups each were administered 5, 7.5, or 10 mg/kg BID doxycycline orally for 28 days and 6 µg/kg ivermectin monthly, with three untreated groups serving as controls. Study animals were necropsied and examined prior to treatment as well as 30 and 60 days post-treatment.

Results: Mean worm weight was unaffected by dosage but exhibited a significant increase at 30 days and significant decrease at 60 days post-treatment, including in control groups. Histopathology lesion scores did not significantly differ among groups, with the exception of the lung composite score for one untreated group. Liver enzymes, the levels of which are a concern in doxycycline treatment, were also examined, with no abnormalities in alanine aminotransferase or alkaline phosphatase observed.

Conclusions: No consistent worsening of tissue lesions was observed with or without the AHS-recommended 30-day wait period, nor did reduced dosages of doxycycline lead to worsening of pathology or any change in efficacy in depleting worm weight. Mean worm weight did significantly increase prior to, and decrease following, the wait period. Future work that also includes adulticide treatment (i.e. melarsomine) will study treatment recommendations that may improve both animal health and owner compliance.

Andrew R Moorhead, Christopher C Evans, Kaori Sakamoto, Michael T Dzimianski, Abdelmoneim Mansour, Utami DiCosty, Crystal Fricks, Scott McCall, Ben Carson, C Thomas Nelson, John W McCall. Parasit Vectors. 2023 Jul 25;16(1):251. doi: 10.1186/s13071-023-05858-2.

Evaluation of renal values during treatment for heartworm disease in 27 client-owned dogs

Background: Canine heartworm disease (CHD) caused by Dirofilaria immitis remains a common preventable disease with increasing incidence in some parts of the USA. The treatment guidelines of the American Heartworm Society (AHS) currently recommend monthly macrocyclic lactone administration, 28 days of doxycycline given orally every 12 h and three injections of melarsomine dihydrochloride (1 injection on day 2 of treatment followed 30 days later by 2 injections 24 h apart). Minocycline has also been utilized when doxycycline is unavailable. The systemic effects of CHD, which particularly impact cardiac and renal function, have been described, with infected dogs often experiencing renal damage characterized by an increase in serum concentrations of renal biomarkers. Although the AHS treatment protocol for CHD has been shown to be safe and effective in most cases, the potential for complications remains. No study as of yet has evaluated changes in symmetric dimethylarginine (SDMA), a sensitive marker of renal function, during treatment for CHD. The purpose of the present study was to evaluate renal function in dogs by measuring serum creatinine and SDMA concentrations during the adulticide treatment period.

Methods: Serum creatinine and SDMA concentrations were measured in 27 client-owned dogs affected by CHD at the following time points: prior to starting doxycycline or minocycline therapy (baseline), during doxycycline or minocycline therapy (interim), at the time of the first dose of melarsomine (first dose), at the time of the second dose of melarsomine (second dose) and at the dog’s follow-up visit after treatment, occurring between 1 and 6 months after completion of therapy (post-treatment). Concentrations of creatinine and SDMA were compared between time points using a mixed effects linear model.

Results: Mean SDMA concentrations following the second dose of melarsomine were significantly lower (-1.80 ug/dL, t-test, df = 99.067, t = -2.694, P-Value = 0.00829) than baseline concentrations. There were no other statistically significant differences in the concentration of either biomarker between the baseline and the other time points in CHD dogs undergoing treatment.

Conclusions: The results suggest that the current AHS protocol may not have a substantial impact on renal function.

C Autumn M Vetter, Alison G Meindl, Bianca N Lourenço, Michael Coyne, Corie Drake, Rachel Murphy, Ira G Roth, Andrew R Moorhead. Parasit Vectors. 2023 Jun 9;16(1):191. doi: 10.1186/s13071-023-05779-0.

Treatment of dogs with Bravecto® (fluralaner) reduces mosquito survival and fecundity

Background: Mosquitoes serve as the vector of canine heartworm (Dirofilaria immitis), which represents a significant and persistent threat to canine health. A reduction in the longevity and/or reproductive success of mosquitoes that take a blood meal from fluralaner-treated dogs may consequently reduce the local transmission of heartworm and prevent new infections. A novel secondary effect of an oral formulation of the ectoparasiticide fluralaner (Bravecto®) against a laboratory strain of the mosquito Aedes aegypti, a potential major vector of canine heartworm, was investigated in this study.

Methods: Six dogs were administered a single dose of fluralaner orally in the form of Bravecto® Chews (at the labeled fluralaner dose of 25 mg/kg body weight), while six control dogs received no treatment. Mosquitoes were fed on blood that was collected from each dog prior to treatment and weekly for 15 weeks post-treatment to assess the continued effects of fluralaner as its serum level decreased. Mosquito fitness was assessed by three parameters: rate of successful blood-feeding, survival, and egg laying.

Results: Successful blood-feeding rate was similar between control and treatment groups. In the fluralaner treatment, mosquito survival was significantly reduced within the first 24 h after blood-feeding, for the first 12 weeks post-treatment of the dogs (efficacy range = 33.2-73.3%). Survival of mosquitoes up until a potentially heartworm-infective timepoint (14 days post-blood-feeding) was significantly reduced in the fluralaner-treated group at several timepoints (1, 2, 5, 11, 12, 13, 14, and 15 weeks post-treatment; efficacy range = 49.4-91.4%), but was less consistently reduced at the other timepoints. Egg laying by mosquitoes was almost completely suppressed for the first 13 weeks following treatment of the dogs with fluralaner (treatment efficacy ≥ 99.8%).

Conclusions: Mosquitoes fed blood from fluralaner-treated dogs experienced a significant reduction in survival and fecundity. These findings support the potential for a reduction in heartworm transmission directly by lethal effects on the vector and indirectly through a reduction of the local vector population when mosquitoes are exposed to animals treated with fluralaner.

Christopher Charles Evans, Dorothy Normile, Sheryl Gamble, Frank Guerino, Michael T Dzimianski, Andrew Riddell Moorhead. Parasit Vectors. 2023 Apr 28;16(1):147. doi: 10.1186/s13071-023-05682-8.

The Domestic Dog as a Laboratory Host for Brugia malayi

Of the three nematodes responsible for lymphatic filariasis in humans, only Brugia malayi is actively maintained in research settings owing to its viability in small animal hosts, principal among which is the domestic cat. While the microfilaremic feline host is necessary for propagation of parasites on any significant scale, this system is plagued by a number of challenges not as pronounced in canine filarial models. For this reason, we investigated the capacity in which dogs may serve as competent laboratory hosts for B. malayi. We infected a total of 20 dogs by subcutaneous injection of 500 B. malayi third-stage larvae (L3) in either a single (n = 10) or repeated infection events (125 L3 per week for four weeks; n = 10). Within each group, half of the individuals were injected in the inguinal region and half in the dorsum of the hind paw. To track the course of microfilaremia in this host, blood samples were examined by microscopy biweekly for two years following infection. Additionally, to identify cellular responses with potential value as predictors of patency, we measured peripheral blood leukocyte counts for the first year of infection. A total of 10 of 20 dogs developed detectable microfilaremia. Peak microfilaria density varied but attained levels useful for parasite propagation (median = 1933 mL-1; range: 33-9950 mL-1). Nine of these dogs remained patent at 104 weeks. A two-way ANOVA revealed no significant differences between infection groups in lifetime microfilaria production (p = 0.42), nor did regression analysis reveal any likely predictive relationships to leukocyte values. The results of this study demonstrate the competence of the dog as a host for B. malayi and its potential to serve in the laboratory role currently provided by the cat, while also clarifying the potential for zoonosis in filariasis-endemic regions.

Christopher C Evans, Katelin E Greenway, Elyssa J Campbell, Michael T Dzimianski, Abdelmoneim Mansour, John W McCall, Andrew R Moorhead. Pathogens. 2022 Sep 21;11(10):1073. doi: 10.3390/pathogens11101073.