Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: CTEGD Blog

Noelia Lander receives research award

Noelia Lander, a cellular biologist and postdoctoral researcher in Roberto Docampo‘s laboratory, has received the 2020 Postdoctoral Award from the UGA Research Foundation.

Lander has used her research to advance understanding of a dangerous parasite affecting millions of people worldwide. She adapted the CRISPR/Cas9 genome-editing system for the study of Trypanosoma cruzi, a human parasite that causes Chagas disease. In widely cited research, she proved the usefulness of this new gene-editing system and its range of applications in T. cruzi, which historically had been difficult to manipulate. Dozens of Chagas molecular biology labs worldwide use her CRISPR/Cas9 strategy to study the parasite’s proteins, characterize its metabolic pathways, understand its biology and search for new chemotherapeutic targets. More recently, she has used her system to study protein function and calcium signaling in T. cruzi. She has trained laboratory personnel and students in scientific research and is currently conducting the mentored phase of an NIH Pathway to Independence Award.

Created in 2011, Postdoctoral Research Awards recognize the remarkable contributions of postdoctoral research scholars to the UGA research enterprise. The UGA Research Foundation funds up to two awards a year to current scholars.

Dennis Kyle elected as American Academy of Microbiology Fellow

American Academy of Microbiology Fellow Dennis Kyle

University of Georgia researcher Dennis Kyle has been elected as a 2020 fellow by the American Academy of Microbiology. He joins a class of 68 new fellows this year.

Kyle is a GRA Eminent Scholar in antiparasitic drug discovery, with appointments in the departments of cellular biology and infectious diseases.

“Election as a Fellow of the American Academy of Microbiology is a tremendous honor and one that was achieved by the success of all the great people I’ve work with over the years on antiparasitic drug discovery,” said Kyle, who joined UGA in 2017 as the director of the Center for Tropical and Emerging Global Diseases.

His research focuses on the discovery, development, and mechanisms of resistance to antiparasitic drugs. Currently, his laboratory is concentrating on malaria, which has become increasingly resistant to current treatments, and the brain-eating amoeba Naegleria fowleri. The Kyle laboratory has been instrumental in developing methods and tests to discover new drugs that act rapidly, effectively and can be combined with existing drugs used to treat these nearly incurable diseases.

Kyle’s work is largely funded by the National Institutes of Health, Medicines for Malaria Venture and a $9.4 million grant from the Bill & Melinda Gates Foundation. He has published more than 200 research papers, and his findings have been cited more than 14,000 times.

Kyle has received a number of awards over the course of his career, including the U.S. Army Achievement Medal in 1990, the U.S. Army Commendation Medal in 1988, and the U.S. Army Meritorious Service Award. He has been honored by the Southeastern Society of Parasitologists and is a fellow of the American Society for Tropical Medicine and Hygiene and the American Association for the Advancement of Science. In 2006, he was named Scientist of the Year by Malaria Foundation International.

Kyle joins more than 2,500 AAM fellows who are elected through a highly selective, peer-review process, based on their records of scientific achievement and original contributions that have advanced microbiology. Only 58 percent of this year’s nominees were elected to the Class of 2020, and the newly elected fellows hail from 11 different countries.

Trainee Spotlight: Edwin Pierre Louis

Trainee Edwin Pierre Louis


Edwin Pierre Louis is a pre-doctoral trainee in the laboratory of Dr. Drew Etheridge. Originally from Haiti, he immigrated to the US to attend the University of Florida (UF), where he graduated with a Bachelor of Science in Biochemistry Molecular Biology. After earning his degree at UF, Edwin accepted a position as a biological scientist in the UF Center of Excellence for Regenerative Health Biotechnology, with a focus on gene and cell based therapeutic development, where he worked for three years. There, he first discovered his love of host-pathogen interactions as a biological scientist working under the supervision of Dr. Richard Snyder for the component Florida Biologix at this center and later merged to create Brammer Bio which was subsequently acquired by Thermo Fisher Scientific. During this time in industry, he realized that to improve his scientific capacities he would need to continue his studies by pursuing a graduate degree. As part of his preparations to apply to a graduate program, he joined the UGA post-baccalaureate PREP program whose mission is to prepare students interested in a graduate degree for the application process. During this time, he was granted the opportunity to join Dr. Michael Terns’ laboratory for a year where he investigated the molecular mechanism of CRISPR-Cas based viral defense in Streptococcus thermophilus as well as prime adaptation events in the type II-A CRISPR-Cas system.

Since attending UGA, Edwin has been awarded both the Gateway to Graduate School Bridge Program and the Graduate Scholars Leadership, Engagement and Development Program (GS LEAD) scholarships sponsored by the National Science Foundation (NSF).

What is your research focus and why are you interested in the topic?

Broadly, my key research interests center around how organisms like viruses and parasites manipulate their host cell in order to grow and propagate. My current project is focused on elucidating how the protozoan pathogen Toxoplasma gondii is able to use secreted protein effectors to manipulate its host cells functions.

Why did you choose UGA?

I chose to study at the University of Georgia, in part, because of my excellent post-baccalaureate experience in the PREP program. It was evident from my interactions that UGA excels at fostering a productive relationship between students and faculty. Regardless of any faculty member’s relationship to the students, there was a sustained willingness for faculty to give of their time in order to see the students succeed.  I also decided to pursue my PhD at UGA because of the cutting-edge research and in particular the collection of outstanding parasitologists that is uniquely found in the Center for Tropical and Emerging Global Diseases (CTEGD).

What are your future professional plans?

As I continue my graduate studies on host pathogen interaction, I plan to do some post-doctoral trainings to augment my apprenticeship and ultimately become an independent scientist to lead my own research group.  I also hope to be able to give back to the local community that has contributed so much to my own personal success by donating my time and knowledge to mentor young budding scientists especially those from underprivileged homes and/or underdeveloped countries.


Support trainees like Edwin by giving today to the Center for Tropical & Emerging Global Diseases.

[button size=’large’ style=” text=’Give Online’ icon=” icon_color=’#b80d32′ link=’’ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=” hover_background_color=” font_style=” font_weight=” text_align=’center’ margin=”]

Battling Malaria

UGA is developing new drugs to fight a lethal parasite. Dennis Kyle discusses what his lab is doing to fight malaria in this brief (2:30) video.



Donate to the Center for Tropical and Emerging Global Diseases

[button size=’large’ style=” text=’Give Now’ icon=” icon_color=’BA0C2F’ link=’′ target=’_self’ color=” hover_color=” border_color=” hover_border_color=” background_color=” hover_background_color=” font_style=” font_weight=” text_align=” margin=”]

Sharing the Knowledge: NIH Award Supports Expanded Genomics Data Resource

By: Alan Flurry

A team led by scientists at the University of Pennsylvania and University of Georgia provides thousands of researchers around the world with access to the Eukaryotic Pathogen Genomics Database (, a collection of resources for analyzing large-scale datasets associated with microbial pathogens. These include the parasites responsible for malaria, sleeping sickness, and toxoplasmosis; the fungi responsible for thrush, aspergillosis and Valley Fever; and many other important diseases. In parallel, a team led by investigators at the University of Notre Dame has been responsible for similar resources covering invertebrate vectors of disease (, including the mosquitoes transmitting malaria, Zika, and yellow fever, the ticks responsible for Lyme disease and Rocky Mountain Spotted Fever, and others.

To ensure that this important work continues, the National Institute of Allergy and Infectious Diseases, a part of the National Institutes of Health, has awarded a new contract to integrate these resources, worth up to $7.2 million in 2019-2020. The five‐year award for this project, rebranded as (The Eukaryotic Pathogen, Host & Vector Genomics Resource) could total as much as $38.4 million if all associated options are exercised.

The patterns revealed by such “Big Data” provide insight into important diseases, permit the development of diagnostic methods, and define drug and vaccine targets. But to be useful, these immense datasets must be sensibly organized and made conveniently accessible to the researchers worldwide. The integrated VEuPathDB database hosts data on thousands of genomes, representing hundreds of species, along with extensive information on isolate provenance, gene function and the like.

The award is based at Penn, and directed by David S Roos, E Otis Kendall Professor of Biology in the School of Arts & Sciences. Key subcontracts include the University of Georgia (Joint PI Jessica C. Kissinger, Distinguished Professor of Genetics and Bioinformatics in the Franklin College of Arts and Sciences and the Center for Tropical and Emerging Global Diseases), University of Notre Dame (Joint PI Mary Ann McDowell, Associate Professor of Biological Sciences at the Eck Institute for Global Health).  Additional co-investigators include Professors Christian Stoeckert of Penn’s Perelman School of Medicine, Mark Caddick of the University of Liverpool, George K Christophides of Imperial College London, and Paul Flicek, Associate Director of the EMBL-EBI (European Bioinformatics Institute).

“It is wonderful to see the continued investment by NIH, the Wellcome Trust and others in resources that make performing much needed global research on infectious diseases both easier and better,” Kissinger said. “Datasets are larger and more complex than ever due to significant advances in technology. These breakthroughs create challenges for making the resulting data truly accessible and usable by the average researcher.  We strive to remove barriers, integrate diverse data and accelerate the speed with which new hypotheses can be generated and ideas tested both in silico and in the lab.”

“A critical aspect of this now joint program will be its accessibility throughout the world, empowering any infectious disease investigator to interrogate these highly complex databases in comprehensible and productive ways,” said Dan Colley, UGA professor of microbiology and member of the CTEGD who has conducted extensive research on n schistosomiasis in western Kenya. “These databases have led, and the merged data base will lead, to the design of new drugs and studies on how to better control and eliminate these major public health challenges, such as malaria, toxoplasmosis, yellow fever, eastern equine encephalitis and Lyme disease.”

“Since its conception, corresponding with the release of the first parasite genomes, EuPathDB has been a transformative tool in our search for a better understanding of human disease and parasite biology,” said Stephen Hadjuk, Professor Emeritus of biochemistry & molecular biology at UGA whose lab investigates trypanosomes, the causative agent of an human African sleeping sickness. “Today, it’s difficult to imagine any serious research on parasites and host pathology that doesn’t rely, at least to some extent, on EuPathDB. The decision to incorporate the vectors database into the eukaryotic pathogens database was brilliant, and makes this is an exciting new chapter in the EuPathDB story.”

“Innumerable investigators, including my own laboratory, rely on daily access to the high quality genomic and functional datasets made available by the VEuPathDB Project,” says Keith Gull, Professor of Molecular Microbiology at Oxford University.  “Sustainable support for such resources is imperative if we are to capitalize on the promise of modern technologies for scientific discovery and translational application.”  Joe Heitman, James B Duke Professor / Chair of Molecular Genetics & Microbiology at Duke University agrees: “Inclusion of fungal pathogens under the BRC umbrella has greatly enhanced our ability to study important human mycoses.  Cross-species comparisons provide insights into the biology and pathogenesis of these fascinating organisms, which can be deadly – but can also serve as workhorses for valuable biotechnology development.”

Originally published at

Clinically silent relapsing malaria may still pose a threat

The immune system can control a relapsing form of malaria enough to avoid clinical signs of disease, but it doesn’t eliminate transmissible parasites from the body that may still be infectious to mosquitoes. That’s the conclusion of a study on a nonhuman primate model of Plasmodium vivax infection, which has implications relevant to malaria elimination strategies.

Keep reading about the MaPHIC study at